Home
Class 12
MATHS
Find 'x' and 'y', if 2[(1,3),(0,x)]+[(y,...

Find 'x' and 'y', if `2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix} \), we will follow these steps: ### Step 1: Multiply the first matrix by 2 We start by multiplying each element of the matrix \( \begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} \) by 2. \[ 2\begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 & 2 \cdot 3 \\ 2 \cdot 0 & 2 \cdot x \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 0 & 2x \end{pmatrix} \] **Hint:** Remember to multiply each element of the matrix by the scalar. ### Step 2: Write the equation with the multiplied matrix Now we can rewrite the equation with the multiplied matrix: \[ \begin{pmatrix} 2 & 6 \\ 0 & 2x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix} \] ### Step 3: Add the two matrices on the left side Next, we add the two matrices on the left side: \[ \begin{pmatrix} 2 + y & 6 + 0 \\ 0 + 1 & 2x + 2 \end{pmatrix} = \begin{pmatrix} 2 + y & 6 \\ 1 & 2x + 2 \end{pmatrix} \] ### Step 4: Set the resulting matrix equal to the right side Now we set the resulting matrix equal to the right side: \[ \begin{pmatrix} 2 + y & 6 \\ 1 & 2x + 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix} \] ### Step 5: Equate the corresponding elements From the equality of matrices, we can equate the corresponding elements: 1. \( 2 + y = 5 \) 2. \( 6 = 6 \) (This is always true and does not provide new information) 3. \( 1 = 1 \) (This is also always true) 4. \( 2x + 2 = 8 \) ### Step 6: Solve for \( y \) From the first equation \( 2 + y = 5 \): \[ y = 5 - 2 = 3 \] ### Step 7: Solve for \( x \) From the fourth equation \( 2x + 2 = 8 \): \[ 2x = 8 - 2 = 6 \\ x = \frac{6}{2} = 3 \] ### Final Answer Thus, the values of \( x \) and \( y \) are: \[ x = 3, \quad y = 3 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (b) Short Answer Type Questions|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the values of x and y, if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2) :}]=[{:(5,6),(1,8):}].

Find x and y if 2[[2,3],[0,x]]+[[y,0],[1,3]]=[[5,6],[1,8]]

From the equation : 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) find x-y

From the equation : 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) find x and y

If 2 [{:(1, 3),(0,x):}] + [{:(y, 0),(1,2):}] ^(T) = {[{:( 5, 6),(1,8):}]^(T)} ^(T), then the values of x, y respectively are :

Find x , y , z , t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .

Find matrices 'X' and 'Y' if : 2X+3Y=[(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

Find X and Y ,if 2X + 3Y = [(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

Find the values of x and y satisfying the equation: 2[[1,3],[0,x]]+[[y,0],[1,2]]=[[5,6],[1,8]]