Home
Class 12
MATHS
If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,...

If `A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)]`, find (i) `2B-3C` (ii) `A-2B+3C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Given Matrices: - \( A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -8 & -1 \end{pmatrix} \) - \( B = \begin{pmatrix} 4 & 5 & 6 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} \) - \( C = \begin{pmatrix} -1 & -2 & 1 \\ -1 & 2 & 3 \\ -1 & -2 & 2 \end{pmatrix} \) ### (i) Finding \( 2B - 3C \) 1. **Calculate \( 2B \)**: \[ 2B = 2 \times \begin{pmatrix} 4 & 5 & 6 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ -2 & 0 & 2 \\ 4 & 2 & 4 \end{pmatrix} \] 2. **Calculate \( 3C \)**: \[ 3C = 3 \times \begin{pmatrix} -1 & -2 & 1 \\ -1 & 2 & 3 \\ -1 & -2 & 2 \end{pmatrix} = \begin{pmatrix} -3 & -6 & 3 \\ -3 & 6 & 9 \\ -3 & -6 & 6 \end{pmatrix} \] 3. **Now, calculate \( 2B - 3C \)**: \[ 2B - 3C = \begin{pmatrix} 8 & 10 & 12 \\ -2 & 0 & 2 \\ 4 & 2 & 4 \end{pmatrix} - \begin{pmatrix} -3 & -6 & 3 \\ -3 & 6 & 9 \\ -3 & -6 & 6 \end{pmatrix} \] \[ = \begin{pmatrix} 8 - (-3) & 10 - (-6) & 12 - 3 \\ -2 - (-3) & 0 - 6 & 2 - 9 \\ 4 - (-3) & 2 - (-6) & 4 - 6 \end{pmatrix} \] \[ = \begin{pmatrix} 8 + 3 & 10 + 6 & 12 - 3 \\ -2 + 3 & 0 - 6 & 2 - 9 \\ 4 + 3 & 2 + 6 & 4 - 6 \end{pmatrix} \] \[ = \begin{pmatrix} 11 & 16 & 9 \\ 1 & -6 & -7 \\ 7 & 8 & -2 \end{pmatrix} \] ### (ii) Finding \( A - 2B + 3C \) 1. **Use the previously calculated \( 2B - 3C \)**: \[ A - 2B + 3C = A + (2B - 3C) \] \[ = A + \begin{pmatrix} 11 & 16 & 9 \\ 1 & -6 & -7 \\ 7 & 8 & -2 \end{pmatrix} \] 2. **Calculate \( A - 2B + 3C \)**: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -8 & -1 \end{pmatrix} \] \[ = \begin{pmatrix} 1 + 11 & 2 + 16 & 3 + 9 \\ -1 + 1 & 0 - 6 & 2 - 7 \\ 1 + 7 & -8 + 8 & -1 - 2 \end{pmatrix} \] \[ = \begin{pmatrix} 12 & 18 & 12 \\ 0 & -6 & -5 \\ 8 & 0 & -3 \end{pmatrix} \] ### Final Results: - \( 2B - 3C = \begin{pmatrix} 11 & 16 & 9 \\ 1 & -6 & -7 \\ 7 & 8 & -2 \end{pmatrix} \) - \( A - 2B + 3C = \begin{pmatrix} 12 & 18 & 12 \\ 0 & -6 & -5 \\ 8 & 0 & -3 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Short Answer Type Questions|11 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

If A=[[1,2,3],[-1,0,2],[1,-3,-]], B=[[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] verify that A+(B+C)=(A+B)+C

If A =[[1,2,3],[-1,0,2],[1,-3,-1]] , B= [[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1], [-1,2,3],[-1,-2,2]] verify that A(B+C)=AB+AC .

If A=[[1,2,3] , [-1,0,2] , [-2,-3,1]], B=[[4,5,1] , [-1,0,3] , [2,1,2]], C=[[-1,-2,1] , [-1,2,3] , [-1,-2,2]] then A-2B+3C=

If A=[(2,3,4),(-3,0,2)], B=[(3,-4,-5),(1,2,1)], C=[(5,-1,0),(7,0,3)], then find A+B+C.

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).