Home
Class 12
MATHS
Evaluate the following : (i) [(4),(5)]...

Evaluate the following :
(i) `[(4),(5)][7" "9]+[(4,0),(0,-5)]`
(ii) `["x y z"][(a,h,g),(h,b,f),(g,f,c)][(x),(y),(z)]`
(iii) `[(1,-1),(0,2),(2,3)]([(1,0,2),(2,0,1)]-[(0,1,2),(1,0,2)])`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given expressions step by step. ### (i) Evaluate `[(4),(5)][(7, 9)] + [(4, 0), (0, -5)]` 1. **Matrix Multiplication**: - We have a 2x1 matrix `[(4), (5)]` and a 1x2 matrix `[(7, 9)]`. - The result will be a 2x2 matrix. - Calculate the elements: - First element: \(4 \times 7 = 28\) - Second element: \(4 \times 9 = 36\) - Third element: \(5 \times 7 = 35\) - Fourth element: \(5 \times 9 = 45\) So, the resulting matrix from multiplication is: \[ \begin{bmatrix} 28 & 36 \\ 35 & 45 \end{bmatrix} \] 2. **Add the matrices**: - Now, add the resulting matrix with `[(4, 0), (0, -5)]`: \[ \begin{bmatrix} 28 & 36 \\ 35 & 45 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 28 + 4 & 36 + 0 \\ 35 + 0 & 45 - 5 \end{bmatrix} \] - This results in: \[ \begin{bmatrix} 32 & 36 \\ 35 & 40 \end{bmatrix} \] ### (ii) Evaluate `["x y z"][(a,h,g),(h,b,f),(g,f,c)][(x),(y),(z)]` 1. **Matrix Multiplication**: - We have a 1x3 matrix `["x y z"]` and a 3x3 matrix `[(a,h,g),(h,b,f),(g,f,c)]`. - The result will be a 1x3 matrix. - Calculate the elements: - First element: \(x \cdot a + y \cdot h + z \cdot g\) - Second element: \(x \cdot h + y \cdot b + z \cdot f\) - Third element: \(x \cdot g + y \cdot f + z \cdot c\) So, the resulting matrix is: \[ \begin{bmatrix} xa + yh + zg & xh + yb + zf & xg + yf + zc \end{bmatrix} \] 2. **Multiply with the column matrix**: - Now, multiply the resulting 1x3 matrix with the column matrix `[(x),(y),(z)]`: \[ \begin{bmatrix} xa + yh + zg & xh + yb + zf & xg + yf + zc \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] - This results in: \[ (xa + yh + zg)x + (xh + yb + zf)y + (xg + yf + zc)z \] ### (iii) Evaluate `[(1,-1),(0,2),(2,3)]([(1,0,2),(2,0,1)] - [(0,1,2),(1,0,2)])` 1. **Matrix Subtraction**: - First, calculate the subtraction: \[ \begin{bmatrix} (1-0) & (0-1) & (2-2) \\ (2-1) & (0-0) & (1-2) \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \] 2. **Matrix Multiplication**: - Now, multiply `[(1,-1),(0,2),(2,3)]` with the resulting matrix: \[ \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \] - The resulting matrix will be a 3x3 matrix: - Calculate the elements: - First row: - \(1 \cdot 1 + (-1) \cdot 1 + 0 \cdot 1 = 0\) - \(1 \cdot (-1) + (-1) \cdot 0 + 0 \cdot (-1) = -1\) - \(1 \cdot 0 + (-1) \cdot (-1) + 0 \cdot (-1) = 1\) - Second row: - \(0 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 = 5\) - \(0 \cdot (-1) + 2 \cdot 0 + 3 \cdot (-1) = -3\) - \(0 \cdot 0 + 2 \cdot (-1) + 3 \cdot (-1) = -5\) - Third row: - \(2 \cdot 1 + 3 \cdot 1 + 0 \cdot 1 = 5\) - \(2 \cdot (-1) + 3 \cdot 0 + 0 \cdot (-1) = -2\) - \(2 \cdot 0 + 3 \cdot (-1) + 0 \cdot (-1) = -3\) So, the final result is: \[ \begin{bmatrix} 0 & -1 & 1 \\ 5 & -3 & -5 \\ 5 & -2 & -3 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If 2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}] , find (x-y).

Find x , y , z , t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .

Let A and B be two matrices of the same order 3xx3 such that A=[(-5,1,3),(7,1,-5),(1,-1,1)] and B=[(1,1,2),(3,2,1),(2,1,3)] x+y+2z=1, 3x+2y+z=7 and 2x+y+3z=2 be a system of equatons in x,y,z The value of AB and hence solve the system of equation (A) [(-5,1,5),(21,2,-5),(2,-1,3)] (B) [(4,0,0),(0,4,0),(0,0,4)] (C) [(0,0,1),(0,1,0),(1,0,0)] (D) [(2,-5,1),(1,3,6),(0,0,-0)]

Given X=[(2,0,2),(1,0,-1)]Y=[(3,-1,0),(-2,0,-1)] , find Z such X+Y+Z=O

Which of the following points lie on the x-axis ? (i) A(0, 8) (ii) B(4, 0) (iii) C(0, -3) (iv) D(-6, 0) (v) E(2, 1) (vi) F(-2, -1) (vii) G(-1, 0) (viii) H(0, -2)

If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"

If [(1,4),(2,0)] = [(x,y^(2)),(z,0)] y lt 0 then x-y+z is equal to

Let A={-1,0,1,2}andB={2,3,4,5} . Find which of the following are functions from A to B. Given reason. (i) f={(-1,2),(-1,3),(0,4),(1,5)} (ii) g={(0 ,2),(1,3),(2,4)} (iii) h={(-1,2),(0,3),(1,4),(2,5)}

MODERN PUBLICATION-MATRICES-Exercise 3 (d ) Short Answer Type Questions
  1. If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)], find PQ.

    Text Solution

    |

  2. If I is the identity matrix and A is a square matrix such that A...

    Text Solution

    |

  3. If A=[1 0-1 7] and I=[1 0 0 1] , then find k so that A^2=8A+k I

    Text Solution

    |

  4. if A=[{:(costheta,sin theta ),(-sin theta,costheta):}], then show that...

    Text Solution

    |

  5. If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)], then Find AB

    Text Solution

    |

  6. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  7. यदि A = [{:(5,-1),(6,7)]"ओर " B = [ {:(2,1),(3,4):}] तो सिद्ध कर...

    Text Solution

    |

  8. Evaluate the following : (i) [(4),(5)][7" "9]+[(4,0),(0,-5)] (ii)...

    Text Solution

    |

  9. If [ (2x, 3)] [(1,2),(-3,0)][(x),(8)]=0, find 'x'

    Text Solution

    |

  10. for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(...

    Text Solution

    |

  11. find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1)...

    Text Solution

    |

  12. Find the values of 'a' and 'b' for which the following hold : [(3,2)...

    Text Solution

    |

  13. Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] (a) Find AB. (b) Is BA...

    Text Solution

    |

  14. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  15. Show that AB = BA in each of the following cases: (i) A=[{:(costheta...

    Text Solution

    |

  16. show that (i) [{:(5,-1),(6,7):}][{:(2,1),(3,4):}]ne[{:(2,3),(3,4):}...

    Text Solution

    |

  17. Show with the help of an example that AB=O whereas BA!=O, where O is a...

    Text Solution

    |

  18. Give an example of three matrices A ,\ B ,\ C such that A B=A C but...

    Text Solution

    |

  19. If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

    Text Solution

    |

  20. If A=[(2,0,1),(2,1,3),(1,-1,0)], then find (A^(2)-5A)

    Text Solution

    |