Home
Class 12
MATHS
If A=[(2,0,1),(2,1,3),(1,-1,0)], then fi...

If `A=[(2,0,1),(2,1,3),(1,-1,0)]`, then find `(A^(2)-5A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 - 5A \) for the matrix \( A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] We will calculate each element of the resulting matrix: - First row, first column: \[ 2 \cdot 2 + 0 \cdot 2 + 1 \cdot 1 = 4 + 0 + 1 = 5 \] - First row, second column: \[ 2 \cdot 0 + 0 \cdot 1 + 1 \cdot (-1) = 0 + 0 - 1 = -1 \] - First row, third column: \[ 2 \cdot 1 + 0 \cdot 3 + 1 \cdot 0 = 2 + 0 + 0 = 2 \] - Second row, first column: \[ 2 \cdot 2 + 1 \cdot 2 + 3 \cdot 1 = 4 + 2 + 3 = 9 \] - Second row, second column: \[ 2 \cdot 0 + 1 \cdot 1 + 3 \cdot (-1) = 0 + 1 - 3 = -2 \] - Second row, third column: \[ 2 \cdot 1 + 1 \cdot 3 + 3 \cdot 0 = 2 + 3 + 0 = 5 \] - Third row, first column: \[ 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot 1 = 2 - 2 + 0 = 0 \] - Third row, second column: \[ 1 \cdot 0 + (-1) \cdot 1 + 0 \cdot (-1) = 0 - 1 + 0 = -1 \] - Third row, third column: \[ 1 \cdot 1 + (-1) \cdot 3 + 0 \cdot 0 = 1 - 3 + 0 = -2 \] Thus, we have: \[ A^2 = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Now, we need to calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - 5A \) Now, we will subtract \( 5A \) from \( A^2 \): \[ A^2 - 5A = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} - \begin{pmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{pmatrix} \] Calculating each element: - First row: \[ 5 - 10 = -5, \quad -1 - 0 = -1, \quad 2 - 5 = -3 \] - Second row: \[ 9 - 10 = -1, \quad -2 - 5 = -7, \quad 5 - 15 = -10 \] - Third row: \[ 0 - 5 = -5, \quad -1 - (-5) = 4, \quad -2 - 0 = -2 \] Thus, we have: \[ A^2 - 5A = \begin{pmatrix} -5 & -1 & -3 \\ -1 & -7 & -10 \\ -5 & 4 & -2 \end{pmatrix} \] ### Final Answer \[ A^2 - 5A = \begin{pmatrix} -5 & -1 & -3 \\ -1 & -7 & -10 \\ -5 & 4 & -2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A=[[2,0,1] , [2,1,3] , [1,-1,0]] then (A^2-5A)=

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

MODERN PUBLICATION-MATRICES-Exercise 3 (d ) Short Answer Type Questions
  1. If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)], find PQ.

    Text Solution

    |

  2. If I is the identity matrix and A is a square matrix such that A...

    Text Solution

    |

  3. If A=[1 0-1 7] and I=[1 0 0 1] , then find k so that A^2=8A+k I

    Text Solution

    |

  4. if A=[{:(costheta,sin theta ),(-sin theta,costheta):}], then show that...

    Text Solution

    |

  5. If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)], then Find AB

    Text Solution

    |

  6. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  7. यदि A = [{:(5,-1),(6,7)]"ओर " B = [ {:(2,1),(3,4):}] तो सिद्ध कर...

    Text Solution

    |

  8. Evaluate the following : (i) [(4),(5)][7" "9]+[(4,0),(0,-5)] (ii)...

    Text Solution

    |

  9. If [ (2x, 3)] [(1,2),(-3,0)][(x),(8)]=0, find 'x'

    Text Solution

    |

  10. for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(...

    Text Solution

    |

  11. find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1)...

    Text Solution

    |

  12. Find the values of 'a' and 'b' for which the following hold : [(3,2)...

    Text Solution

    |

  13. Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] (a) Find AB. (b) Is BA...

    Text Solution

    |

  14. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  15. Show that AB = BA in each of the following cases: (i) A=[{:(costheta...

    Text Solution

    |

  16. show that (i) [{:(5,-1),(6,7):}][{:(2,1),(3,4):}]ne[{:(2,3),(3,4):}...

    Text Solution

    |

  17. Show with the help of an example that AB=O whereas BA!=O, where O is a...

    Text Solution

    |

  18. Give an example of three matrices A ,\ B ,\ C such that A B=A C but...

    Text Solution

    |

  19. If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

    Text Solution

    |

  20. If A=[(2,0,1),(2,1,3),(1,-1,0)], then find (A^(2)-5A)

    Text Solution

    |