Home
Class 12
MATHS
The integral int (sec^(2) x)/((sec x+tan...

The integral `int (sec^(2) x)/((sec x+tan x)^(9//2))dx` equals : (for some arbitrary constant k)

A

`-(1)/((secx+tanx)^(11/2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+k`

B

`(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+k`

C

`-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+k`.

D

`-(1)/((sec x+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+k`.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise MCQs Multiple Choice Questions Level-II|20 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

int (sec x dx)/(log (sec x +tan x)) =

int(sec^(2)xdx)/(log (tan x)^(tanx)) =

int "sec" ("sec" x + tan x) dx .

Evaluate int secx ( sec x + tan x ) dx

int "sec"^(2) (7 - 4x) dx .

Find int x sec^(2) x dx.

The value of the integral int (dx)/(x (1 + log x)^(2)) is equal to

The integral int_(-1//2)^(1//2) ([x] + l_n ((1 + x)/(1 - x)))dx equals :