Home
Class 12
MATHS
If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,,...

If `f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}|`, then

A

`f(x) ` attains its minimum at `x =0`

B

` f(x)` attains its maximum at ` x =0`

C

`f' (x)=0` at more than three points in `(-pi , pi )`

D

`f' (x) =0` at exactly three points in ` (-pi, pi )`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`f(x) = |{:( cos 2x,, cos 2x,, sin 2 x ), ( -cos x,, cos x,, - sin x ), ( sin x,, sin x,, cosx):}| `
` cos 2x ( cos ^(2) x + sin ^(2) x) - cos 2x `
`" " (- cos ^(2)x + sin ^(2) x ) + sin 2x (- sin 2x ) `
`" " = cos 2x + cos 4x `
` f ' (x) = - 2sin 2x - 4 sin 4x = - 2 sin 2x ( 1+ 4 cos 2x ) `
At `" " x =0`
` f'(x) = 0`
and ` f (x) = 2 `
Also, ` f ' (x) = 0`
` sin 2x = 0`
or ` cos 2x = (-1)/(4) `
`rArr " " x = ( n pi )/(2) or cos 2x = - (1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise MAXIMA AND MINIMA (MATCH THE COLUMNS)|1 Videos
  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise MAXIMA AND MINIMA (PASSAGE BASED PROBLEMS)|3 Videos
  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise MAXIMA AND MINIMA (OBJECTIVE QUESTIONS I)|29 Videos
  • 3D Geometry

    IIT JEE PREVIOUS YEAR|Exercise Equation of Plane Objective Question II (Integer Answer Type Question)|1 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos

Similar Questions

Explore conceptually related problems

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

(cos 2x)/(cos x-sin x) = cos x + sin x

2tan2x = (cos x + sin x) / (cos x-sin x) - (cos x-sin x) / (cos x + sin x)

(sin x + cos x)^2 + (sin x - cos x)^2

(cos 9x - cos 5x)/(sin 17x - sin 3x) = (-sin 2x)/(cos 10x)

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x