Home
Class 12
MATHS
If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log...

If `f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0)` then the value of the integral `int_(-pi//4)^(pi//4)g(f(x))` dx is

A

`"log"_(e)3`

B

`"log"_(e)e`

C

`"log"_(e)2`

D

`"log"_(e)1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given functions are
`g(x)=log_(e)x,x gt0 and f (x) = (2-x cosx)/(2+x cos x)`
Let `I=int_(-pi//4)^(pi//4)f(f(x)) dx`
Then , I ` int_(-pi//4)^(pi//4)log _(e)((2-x cosx)/(2+ xcosx))dx ` . . . (i) Now , by using the property
`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x) dx` , we get
`I=int_(-pi//4)^(pi//4)[ log_(e)((2+cosx)/(2-cos x))]`dx
On adding Eqs . (i) and (ii) , we get
`2I=int_(-pi//4)^(pi//4)[log_(e)((2-xcos x)/(2+ x cos x))+ log_9e((2+ cos x)/(2 x cosx))] dx`
`=int_(-pi//4)^(pi//4)[ log_(e) ((2- xcos x)/(2+ x cos x )xx(2+x cosx)/(2-x cosx))`dx
`[:' log _(e) A+log_(e)B= log_(e)AB]`
`rarr2I=int_(-pi//4)^(pi//4)log_(e)(1) dx =0 rArr I=0= log_(e)(1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

The value of the integral int_(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-x))}cos x dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int _(0)^(pi//2) log | tan x| dx is

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

The value of the integral int_(0) ^(pi) cos 2 x log _(e) sin x dx is