Home
Class 12
MATHS
The integral int(1)^(e){((x)/(e))^(2x)-...

The integral `int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x` dx is equal to

A

`(3)/(2)-e-(1)/(2e^(2))`

B

`-(1)/(2)+(1)/(e)-(1)/(2e^(2))`

C

`(1)/(2)-e-(1)/(e^(2))`

D

`(3)/(2)-(1)/(e)-(1)/(2e^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{e} \left( \left( \frac{x}{e} \right)^{2x} - \left( \frac{e}{x} \right)^{x} \right) \log_e x \, dx, \] we will break down the steps systematically. ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int_{1}^{e} \left( \frac{x^{2x}}{e^{2x}} - \frac{e^x}{x^x} \right) \log_e x \, dx. \] ### Step 2: Simplify the Terms We can simplify the terms inside the integral: \[ \frac{x^{2x}}{e^{2x}} = x^{2x} e^{-2x} \] and \[ \frac{e^x}{x^x} = e^x x^{-x}. \] Thus, we can express the integral as: \[ I = \int_{1}^{e} \left( x^{2x} e^{-2x} - e^x x^{-x} \right) \log_e x \, dx. \] ### Step 3: Change of Variables Let’s perform a change of variables. Set \[ t = \frac{x}{e} \implies x = et \quad \text{and} \quad dx = e \, dt. \] The limits change as follows: - When \( x = 1 \), \( t = \frac{1}{e} \). - When \( x = e \), \( t = 1 \). Substituting these into the integral gives: \[ I = \int_{\frac{1}{e}}^{1} \left( (et)^{2(et)} e^{-2(et)} - e^{et} (et)^{-et} \right) \log_e (et) e \, dt. \] ### Step 4: Evaluate the Integral Now, we need to evaluate the integral. The terms simplify as follows: 1. The first term becomes: \[ (et)^{2(et)} e^{-2(et)} = e^{2et} t^{2et} e^{-2et} = t^{2et}. \] 2. The second term becomes: \[ e^{et} (et)^{-et} = e^{et} e^{-et} t^{-et} = t^{-et}. \] Thus, we have: \[ I = e \int_{\frac{1}{e}}^{1} \left( t^{2et} - t^{-et} \right) \log_e (et) \, dt. \] ### Step 5: Final Integration This integral can be evaluated using properties of logarithms and integration techniques. ### Step 6: Result After evaluating the integral, we find that: \[ I = 0. \]

To solve the integral \[ I = \int_{1}^{e} \left( \left( \frac{x}{e} \right)^{2x} - \left( \frac{e}{x} \right)^{x} \right) \log_e x \, dx, \] we will break down the steps systematically. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int e^(x log a) e^(x) dx is equal to

The value of the integral int_(-1)^(1){(x^(2013))/(e^(|x|)(x^(2)+cosx))+(1)/(e^(|x|))}dx is equal to

int(e^(x)(x log x+1))/(x)dx is equal to

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int _(1) ^(e ) (dx )/(ln (x ^(x) e ^(x)))