Home
Class 12
MATHS
int(pi//4)^(3pi//4)(dx)/(1+cosx) is equa...

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal to

A

`-2`

B

2

C

4

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}\), we will follow these steps: ### Step 1: Rewrite the integrand We know that \(1 + \cos x\) can be rewritten using the identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integrand: \[ \frac{1}{1 + \cos x} = \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{1}{2} \sec^2\left(\frac{x}{2}\right) \] ### Step 2: Set up the integral Now, we can set up the integral with the new expression: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{2} \sec^2\left(\frac{x}{2}\right) dx \] ### Step 3: Substitute to simplify the integral Let \(u = \frac{x}{2}\). Then, \(dx = 2 du\). The limits change as follows: - When \(x = \frac{\pi}{4}\), \(u = \frac{\pi}{8}\) - When \(x = \frac{3\pi}{4}\), \(u = \frac{3\pi}{8}\) Thus, the integral becomes: \[ \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sec^2(u) \, du \] ### Step 4: Integrate The integral of \(\sec^2(u)\) is \(\tan(u)\): \[ \int \sec^2(u) \, du = \tan(u) \] So, we evaluate: \[ \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sec^2(u) \, du = \tan\left(\frac{3\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right) \] ### Step 5: Find the values of \(\tan\left(\frac{3\pi}{8}\right)\) and \(\tan\left(\frac{\pi}{8}\right)\) Using the tangent addition formula: \[ \tan\left(\frac{3\pi}{8}\right) = \tan\left(\frac{\pi}{4} + \frac{\pi}{8}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{4}\right)\tan\left(\frac{\pi}{8}\right)} \] Since \(\tan\left(\frac{\pi}{4}\right) = 1\): \[ \tan\left(\frac{3\pi}{8}\right) = \frac{1 + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)} \] ### Step 6: Final result Thus, the final result of the integral is: \[ \tan\left(\frac{3\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right) = \frac{1 + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)} - \tan\left(\frac{\pi}{8}\right) \] This simplifies to: \[ \frac{1 + \tan\left(\frac{\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right)(1 - \tan\left(\frac{\pi}{8}\right))}{1 - \tan\left(\frac{\pi}{8}\right)} = \frac{1}{1 - \tan\left(\frac{\pi}{8}\right)} \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = \tan\left(\frac{3\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right) \]

To solve the integral \(\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}\), we will follow these steps: ### Step 1: Rewrite the integrand We know that \(1 + \cos x\) can be rewritten using the identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integrand: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(1)/(1+cosx)dx is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to: