Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(x^(2)co...

The value of `int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x))` d x is equal to

A

`(pi^(2))/(4)-2`

B

`(pi^(2))/(4)+2`

C

`pi^(2)-e^(-pi//2)`

D

`pi^(2)-e+^(pi//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we can use the property of definite integrals and the substitution \( x \to -x \). ### Step 1: Substitute \( x \) with \( -x \) We start by substituting \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(-x)^2 \cos(-x)}{1 + e^{-x}} \, (-dx). \] Since \( (-x)^2 = x^2 \) and \( \cos(-x) = \cos x \), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + \frac{1}{e^x}} \, dx. \] ### Step 2: Simplify the integral We can simplify the denominator: \[ 1 + e^{-x} = \frac{e^x + 1}{e^x}. \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx \) Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \left( \frac{1}{1 + e^x} + \frac{e^x}{e^x + 1} \right) \, dx. \] ### Step 4: Simplify the expression inside the integral Notice that: \[ \frac{1}{1 + e^x} + \frac{e^x}{e^x + 1} = \frac{1 + e^x}{1 + e^x} = 1. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 5: Evaluate the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx \) Now we need to evaluate: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] Using integration by parts, let: - \( u = x^2 \) and \( dv = \cos x \, dx \) - Then \( du = 2x \, dx \) and \( v = \sin x \) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int x^2 \cos x \, dx = x^2 \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int \sin x \cdot 2x \, dx. \] Evaluating \( x^2 \sin x \) at the limits: At \( x = \frac{\pi}{2} \): \[ \left( \frac{\pi}{2} \right)^2 \cdot 1 = \frac{\pi^2}{4}. \] At \( x = -\frac{\pi}{2} \): \[ \left( -\frac{\pi}{2} \right)^2 \cdot (-1) = -\frac{\pi^2}{4}. \] Thus, \[ x^2 \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi^2}{4} - \left(-\frac{\pi^2}{4}\right) = \frac{\pi^2}{2}. \] ### Step 6: Evaluate the remaining integral Now we need to evaluate: \[ -2 \int \sin x \cdot x \, dx. \] Using integration by parts again: Let \( u = x \) and \( dv = \sin x \, dx \), then \( du = dx \) and \( v = -\cos x \): \[ \int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x. \] Evaluating this from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): At \( x = \frac{\pi}{2} \): \[ -\frac{\pi}{2} \cdot 0 + 1 = 1. \] At \( x = -\frac{\pi}{2} \): \[ -\left(-\frac{\pi}{2}\right) \cdot 0 - 1 = -1. \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \, dx = 1 - (-1) = 2. \] ### Step 7: Combine results Putting it all together: \[ 2I = \frac{\pi^2}{2} - 2 \cdot 2 = \frac{\pi^2}{2} - 4. \] So, \[ I = \frac{\pi^2}{4} - 2. \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{4} - 2}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we can use the property of definite integrals and the substitution \( x \to -x \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

The value of int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

The value of int_(-pi/2)^( pi/2)(x^(3)+x cos x+tan^(5)x+1)dx is equal to (A)0(B)2C)pi(D) none of these

The value of int_(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to