Home
Class 12
MATHS
int(pi//4)^(3pi//4)(dx)/(1+cosx) is equa...

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal to

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (i)
`rArrI=int_(pi//4)^(3pi//4)(dx)/(1+cos(pi-x))`
`I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(pi//4)^(3pi//4)((1)/(1+cosx)+(1)/(1-cosx))`dx
`rArr2I=int_(pi//4)^(3pi//4)((2)/(1-cos^(2)x))`dx
`rArrI=int_(pi//4)^(3pi//4)"cosec"^(2)xdx=[-cotx]_(pi//4)^(3pi//4)`
`=[-cot(3pi)/(4)+cot(pi)/(4)]=-(-1)+1=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(1)/(1+cosx)dx is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to: