Home
Class 12
MATHS
For every function f (x) which is twice ...

For every function f (x) which is twice differentiable , these will be good approximation of
`int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)}`, for more acutare results for ` cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)]`
When ` c= (a+b)/(2)`
`int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx`
If `lim_(t toa) (int_(a)^(t)f(x)dx-((t-a))/(2){f(t)+f(a)})/((t-a)^(3))=0`, then degree of polynomial function f (x) atmost is

A

0

B

1

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

Given `underset(t toa)(lim)(int_(a)^(t)f(x)dx -((t-a))/(2){f(t)+f(a)})/((t-a)^(3))=0`
Using L ' Hospital ' s rule , put t - a = h
`rArr underset(h to0)(lim)(int_(a)^(a+h)f(x)dx-(h)/(2){f(a+h)+f(a)})/(h^(3))=0`
`rArrunderset(h to0)(lim)(f(a+h)-(1)/(2){f(a+h)+f(a)}-(h)/(2){f'(a+h)})/(3h^(2))=0`
Again , using L ' Hosipital 's rule,
`underset(h to 0)(lim)(f'(a+h)-(1)/(2)f'(a+h)-(1)/(2)f'(a+h)-(h)/(2)f'' (a+h))/(6h)=0`
`rArrunderset(h to 0)(lim)(-(h)/(2)f''(a+h))/(6 h)=0`
`rArrf''(a)=0,AA a in R`
`rArr` f(x) must have maximum degree 1.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

For every function f (x) which is twice differentiable , these will be good approximation of int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)} , for more acutare results for cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)] When c= (a+b)/(2) int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx Good approximation of int_(0)^(pi//2)sinx dx , is

int_(a + c)^(b+c) f(x)dx=

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-c)/2(f(a)+f(b)) , for more accurate result for c in (a, b)F(c)=(b-c)/2 (f(a)-f(c))+(b-c)/2 (f(b)-f(c)). When c = (a+b)/2, int_a^b f(x) dx=(b-a)/4(f(a)+f(b)+f(2f(c)) then int_0 ^(pi/2) sinxdx

If f(x)=x^(3) show that int_(a)^(b)f(x)dx=(b-a)/(6){f(a)+4f((a+b)/(2))+f(b)}

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-a)/2 (f(a)+f(b)) , for more accurate result for c in (a,b), F(c)=(c-a)/2 (f(a)+f(c))+(b-c)/2(f(b)+f(c)) and when c=(a+b)/2, int_a^b f(x)dx=(b-a)/4(f(a)+f(b)+2f(c)) In the above comprehension, if f(x) is a polynomial and lim_(trarra) (int_a^t f(x)dx-(t-a)/2 [f(t)+f(a)])/(t-a)^3=0 for all a then the degree of f(x) can at most be (A) 1 (B) 2 (C) 3 (D) 4