Home
Class 12
MATHS
Let f : [1,oo] to[2,oo] differentiabl...

Let f : `[1,oo] to[2,oo]` differentiable function such that f (1) = 2 . If `[1,oo] to[2,oo]`

Text Solution

Verified by Experts

The correct Answer is:
`(8//3)`

Given , f `(1)=(1)/(3)and6 int_(1)^(x)f(t)dt = 3xf (x) -x^(3),AAx le 1` Using Newton - Leibnitz formula. Differentiating both sides
`rArr6(x)*1-0=3f(x)+3xf'(x)-3x^(2)`
`rArr 3xf' (x) -3 f(x) = 3x^(2) rArr f' (x) -(1)/(x)f(x)=x`
`rArr (xf'(x)-f'(x))/(x^(2))=1rArr (d)/(dx){(x)/(x)}=1`
On integrating both sides , we get
`rArr (f(x))/(x')=x+c` " " [`:' f(1)=(1)/(3)]`
`(1)/(3)=1+crArrc=(2)/(3)andf(x)=x^(2)-(2)/(3)x`
`:. f(2)=4-(4)/(3)=(8)/(3)`
NOTE Here , f (1) = 2 , does not satisfy given function.
`:. f(1) = (1)/(3)`
For that f (x) `=x^(2)-(2)/(3)x andf(2)=4-(4)/(3)=(8)/(3)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_(1)^(x)f(t)dt=3xf(x)-x^(3) for all x>=1, then the value of f(2) is

Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

Statement-1 : Let f : [1, oo) rarr [1, oo) be a function such that f(x) = x^(x) then the function is an invertible function. Statement-2 : The bijective functions are always invertible .