Home
Class 12
MATHS
Evaluate int(0)^(pi)(e^(cosx))/(e^(cosx)...

Evaluate `int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx`.

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`

Let `I=int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx` . . . (i)
`=int_(0)^(pi)(e^(cosx)(pi-x))/(e^(cos(pi-x))+e^(-cos(pi-x)))dx`
`[:' int_(0)^(a)f(x)dx = int_(0)^(a)f(a-x)dx]`
`rArr I=int _(0)^(pi)(e^(-cosx))/(e^(-cosx)+e^(cosx))dx` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`=int_(0)^(pi)(e^(cosx)+e^(-cosx))/(e^(cosx)+e^(-cosx))dx = int_(0)^(pi)1 dx = [x] _(0)^(pi)=pi` `rArr I=pi//2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(2pi)|cosx|dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

int_(0)^(pi)(dx)/((6-cosx))

int_(0)^(pi)|cosx|dx=?

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

int_(0)^(pi)(dx)/((5+4cosx))

int_(0)^(pi//2) e^x(sinx+cosx) dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx