Home
Class 12
MATHS
(i) Show that int(0)^(pi)xf(sinx)dx =(pi...

(i) Show that `int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx`
(ii) Find the value of `int_(-1)^(3//2)|x sin pix|dx`.

Text Solution

Verified by Experts

The correct Answer is:
(ii)` [(3pi+1)/(pi^(2))]`

(i) Let `I= int _(0)^(pi) x f ( sin x) dx` . . . (i)
`rArr I= int _(0)^(pi) x (pi-x) f (sinx) dx` . . . (ii)
on adding Eqs . (i) and (ii) , we get
` 2 I = int _(0)^(pi) pi f ( sin x) dx`
`:. int _(0)^(pi) x f ( sin x) dx = (pi)/(2) int _(0)^(pi) f ( sin x) dx` Let `I = int _(-1)^(3//2) | x sin pix|dx`
Since , `|x sin pi x|={{:(x sin pi x_(,),-1 lt x le 1),(- x sin pi x_(,),1 lt x lt (3)/(2)):}`
`:. I = int _(-1)^(1) x sin pi x dx + int_(1) ^(3//2) - sin pi x dx`
`=2 [- ( x cos pix)/(pi) ]_(0)^(1)-2 int_(0)^(1) 1 * ((- cos pix)/(pi))dx`
`- {[ (-x cos pix)/(pi)]_(1)^(3//2)- int_(1)^(3//2)((- cos pix)/(pi))dx}`
`= 2 ((1)/(pi))+(2)/(pi) * [ (sinpix)/(pi) ]_(0)^(1) - ((1)/(pi)) - (1)/(pi) [ (sin pix)/(pi)]_(1)^(3//2)`
` =(2)/(pi) =(2)/(pi^(2))(0-0)+(1)/(pi) +(1)/(pi^(2))(+1-0)`
` = (3)/(pi) +(1)/(pi^(2))= ((3pi+1)/(pi^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

Find the value of int_(-1)^(2)|x sin pi x|dx

int_(0)^( pi/2)(sin x)*dx

int_(0)^( pi)sin(2*x)dx

int_(0)^(pi) sin 3x dx

int_(0)^(pi) [2sin x]dx=

Evaluate int_(0)^((3)/(2))|x sin pi x|dx

int_(0)^(pi) dx/(1-sin x)=

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =