Home
Class 12
MATHS
|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1...

`|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)`

Text Solution

AI Generated Solution

To solve the determinant \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6C|8 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6A|22 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2) then find the value of k

[[a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2)]]=k[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

|[1, b+c, b^(2)+c^(2)], [1, c+a, c^(2)+a^(2)], [1, a+b, a^(2)+b^(2)]| = (a-b)(b-c)(c-a)

[[ Prove that 1+a^(2)+a^(2)b^(2),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)1+ac+a^(2)c^(2),1+bc+b^(2)c^(2),1+c^(2)+c^(2)]]=(a-b)^(2)(b-c)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-

RS AGGARWAL-DETERMINANTS-Exercise 6B
  1. Prove that |[a+b+c, -c, -b],[-c, a+b+c, -a],[-b, -a, a+b+c]|=2(a+b)(b...

    Text Solution

    |

  2. [[a,b,ax+by],[b,c,bx+cy],[ax+by,bx+cy,0]]=(b^2-ac)(ax^2+2bxy+cy^2)

    Text Solution

    |

  3. |[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2),...

    Text Solution

    |

  4. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  5. |[(m+n)^(2), l^(2), mn], [(n+l)^(2), m^(2), ln], [(l+m)^(2), n^(2), lm...

    Text Solution

    |

  6. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  7. Using properties of determinants, prove that: |[b^2+c^2,a^2,a^2],[b^2,...

    Text Solution

    |

  8. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |

  9. Prove that |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=(a+b+c)(a^2+b^2+c^2)

    Text Solution

    |

  10. If a,b,c are non-zero real numbers then D=|[b^2 c^2, bc, b+c] , [c^2a^...

    Text Solution

    |

  11. Using properties of determinants, show the following: |(a+C)^2a b c a...

    Text Solution

    |

  12. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  13. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  14. |[x-3, x-4, x-alpha], [x-2, x-3, x-beta], [x-1, x-2, x-gamma]| =0,"whe...

    Text Solution

    |

  15. |[(a+1)(a+2), a+2, 1], [(a+2)(a+3), a+3, 1], [(a+3)(a+4), a+4, 1]| =-2

    Text Solution

    |

  16. Prove that |(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ca,c^3)|=-(a-b)(b-c)(...

    Text Solution

    |

  17. Prove that |[1,a,bc] , [1,b,ca], [1,c,ab]|=|[1,a,a^2] , [1,b,b^2] , [1...

    Text Solution

    |

  18. |[1,bc,b+c],[1,ca,c+a],[1,ab,a+b]|=|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

    Text Solution

    |

  19. Show that x = 2 is a root of the equation |[x, -6, -1], [2, -3x, x-3],...

    Text Solution

    |

  20. |[1,x,x^3],[1,b,b^3],[1,c,c^3]|=0; b!=c

    Text Solution

    |