Home
Class 12
MATHS
int(sinx)/((1+cos^(2)x))dx...

`int(sinx)/((1+cos^(2)x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{1 + \cos^2 x} \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \frac{\sin x}{1 + \cos^2 x} \, dx = \int \frac{-dt}{1 + t^2} \] ### Step 3: Integrate The integral \( \int \frac{-dt}{1 + t^2} \) is a standard integral that evaluates to: \[ -\tan^{-1}(t) + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \cos x \): \[ -\tan^{-1}(\cos x) + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\sin x}{1 + \cos^2 x} \, dx = -\tan^{-1}(\cos x) + C \]

To solve the integral \( \int \frac{\sin x}{1 + \cos^2 x} \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] ...
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx

int(sinx)/(cos^(2)x)dx=

int(sinx)/(1+cos^2x)dx

int(sinx)/(3+4cos^(2)x)dx

int(sinx)/(1+cos^2x)dx=

int(sinx)/((1+cos x)^(2))dx=

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

" 1."int(sinx)/(cos^(7) x)dx

int(sinx)/(sqrt(cos2x))dx=

(i) int(sinx)/(cos^(5)x)dx