Home
Class 12
MATHS
int(cosx)/((1+sin^(2)x))dx...

`int(cosx)/((1+sin^(2)x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos x}{1 + \sin^2 x} \, dx, \] we can use a substitution method. Let's go through the steps: ### Step 1: Choose a substitution Let \[ t = \sin x. \] Then, the derivative of \( t \) with respect to \( x \) is \[ dt = \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos x}. \] ### Step 2: Substitute in the integral Now, substituting \( t \) into the integral, we have: \[ \int \frac{\cos x}{1 + \sin^2 x} \, dx = \int \frac{\cos x}{1 + t^2} \cdot \frac{dt}{\cos x}. \] The \( \cos x \) terms cancel out: \[ = \int \frac{1}{1 + t^2} \, dt. \] ### Step 3: Integrate The integral \[ \int \frac{1}{1 + t^2} \, dt \] is a standard integral, which equals \[ \tan^{-1}(t) + C. \] ### Step 4: Substitute back Now, substituting back \( t = \sin x \): \[ = \tan^{-1}(\sin x) + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\cos x}{1 + \sin^2 x} \, dx = \tan^{-1}(\sin x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(sin^(2)x)dx=

int(cosx)/(4-sin^(2)x)*dx=

" 4."int(cosx)/(sin^(2) x)dx

int(cosx)/(4+sin^(2)x)*dx

int(cosx)/(sin^(8)x)dx

(i) int (tanx + cot x)^(2) dx , (ii) int((1+2 sinx)/(cos^(2)x))dx , (iii) int ((3cosx+4)/(sin^(2)x))dx

int_(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?

I=int(cosx)/(sin^(6)x)dx

int(cosx)/(1+sin x)^2dx

" 6."int(cosx)/(sin^(4)x)dx