Home
Class 12
MATHS
int(dx)/((x^(2)+4x+8))...

`int(dx)/((x^(2)+4x+8))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{x^2 + 4x + 8}\), we will follow these steps: ### Step 1: Rewrite the Denominator First, we need to rewrite the quadratic expression in the denominator \(x^2 + 4x + 8\) in a more manageable form. We can complete the square. \[ x^2 + 4x + 8 = (x^2 + 4x + 4) + 4 = (x + 2)^2 + 4 \] ### Step 2: Substitute into the Integral Now, we can substitute this back into the integral: \[ \int \frac{dx}{(x + 2)^2 + 2^2} \] ### Step 3: Identify the Integral Formula We recognize that this integral matches the standard form: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \] In our case, \(a = 2\) and we have \(x\) replaced by \((x + 2)\). ### Step 4: Apply the Integral Formula Using the formula, we have: \[ \int \frac{dx}{(x + 2)^2 + 2^2} = \frac{1}{2} \tan^{-1} \left(\frac{x + 2}{2}\right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{dx}{x^2 + 4x + 8} = \frac{1}{2} \tan^{-1} \left(\frac{x + 2}{2}\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x^2+8)=

int(dx)/(x^(2)-4x+5)

int(1)/(x^(2)-4x+8)dx

int(x)/(9-4x^(2))dx

int(x)/(9-4x^(2))dx

int(dx)/(x^2+4x-5)=

If int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8)+tan^(-1)((x-2)/(2)) + C then the value of K is

int((3)/(x^(2))-4x)dx

int(dx)/((9+4x^(2)))dx=?

Evaluate : (i) int(dx)/((1-4x^(2))) (ii) int(dx)/((32-2x^(2))) (iii) int(x^(2))/((1-x^(6)))dx