Home
Class 12
MATHS
int(x^(2))/((x^(2)+6x-3))dx...

`int(x^(2))/((x^(2)+6x-3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{x^2 + 6x - 3} \, dx \), we will follow these steps: ### Step 1: Polynomial Long Division We start by performing polynomial long division on \( \frac{x^2}{x^2 + 6x - 3} \). 1. Divide \( x^2 \) by \( x^2 + 6x - 3 \): - The quotient is \( 1 \). - Multiply \( 1 \) by \( (x^2 + 6x - 3) \) to get \( x^2 + 6x - 3 \). - Subtract this from \( x^2 \): \[ x^2 - (x^2 + 6x - 3) = -6x + 3 \] So, we can rewrite the integral as: \[ \int \left( 1 - \frac{6x - 3}{x^2 + 6x - 3} \right) \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ \int 1 \, dx - \int \frac{6x - 3}{x^2 + 6x - 3} \, dx \] ### Step 3: Integrate the First Part The integral of \( 1 \) is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the Second Part Now we focus on the second integral: \[ \int \frac{6x - 3}{x^2 + 6x - 3} \, dx \] To integrate this, we can use the substitution method. Let: \[ u = x^2 + 6x - 3 \quad \Rightarrow \quad du = (2x + 6) \, dx \] We can express \( dx \) in terms of \( du \): \[ dx = \frac{du}{2x + 6} \] Now, we need to express \( 6x - 3 \) in terms of \( u \): \[ 6x - 3 = 6\left(\frac{u - 6x + 3}{2}\right) - 3 = \frac{6u - 36 + 18}{2} = \frac{6u - 18}{2} = 3u - 9 \] ### Step 5: Substitute and Simplify Now substituting back into the integral: \[ \int \frac{6x - 3}{x^2 + 6x - 3} \, dx = \int \frac{3u - 9}{u} \cdot \frac{du}{2x + 6} \] This simplifies to: \[ \int \left(3 - \frac{9}{u}\right) \cdot \frac{du}{2x + 6} \] ### Step 6: Integrate Now we can integrate: \[ \int 3 \, du - \int \frac{9}{u} \, du = 3u - 9 \ln |u| + C \] ### Step 7: Substitute Back Substituting \( u \) back in: \[ 3(x^2 + 6x - 3) - 9 \ln |x^2 + 6x - 3| + C \] ### Final Answer Combining everything, we have: \[ \int \frac{x^2}{x^2 + 6x - 3} \, dx = x + 3(x^2 + 6x - 3) - 9 \ln |x^2 + 6x - 3| + C \]

To solve the integral \( \int \frac{x^2}{x^2 + 6x - 3} \, dx \), we will follow these steps: ### Step 1: Polynomial Long Division We start by performing polynomial long division on \( \frac{x^2}{x^2 + 6x - 3} \). 1. Divide \( x^2 \) by \( x^2 + 6x - 3 \): - The quotient is \( 1 \). - Multiply \( 1 \) by \( (x^2 + 6x - 3) \) to get \( x^2 + 6x - 3 \). ...
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(x^(2)+6x-12)dx

int(x^(2))/(x^(2)+6x+12)dx

int(x^(2))/(x^(6)+x^(3)-2)dx

int(x^(2)+x-1)/(x^(2)+x-6)dx

int (6x^(2)-(4)/(x^(2))) dx

int(x^(2))/(2-x^(6))dx

int(x^(2))/(x^(6)+2x^(3)-3)dx=

Evaluate : (i) int(3x^(2))/((1+x^(6)))dx (ii) int(x^(3))/((x^(2)+1)^(3))dx (iii) (x^(8))/((1-x^(3))^(1//3))dx

int(3x^(2))/((1+x^(6)))dx

int(3x^(2))/(x^(6)+1)dx