Home
Class 12
MATHS
int(1)^(2)(e^(1//x))/(x^(2))dx...

`int_(1)^(2)(e^(1//x))/(x^(2))dx`

Text Solution

Verified by Experts

Putting `(1)/(x)=t`, we get `I=-int_(1)^(1//2)e^(t)dt=int_(1//2)^(1)e^(t)dt=[e^(t)]_(1//2)^(1)`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16C|58 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(-1)^(1)(e^(-(1)/(x)))/(x^(2)(1+e^(-(2)/(x))))dx is equal to :

Evaluate the integrals int_(1)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)dx

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx