Home
Class 12
MATHS
int(0)^(pi//2)(sinx)/((1+cos^(2)x))dx...

`int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx \), we will use the substitution method. ### Step 1: Substitution Let \( t = \cos x \). Then, the differential \( dx \) can be expressed in terms of \( dt \): \[ dx = -\frac{1}{\sin x} dt \] Since \( \sin^2 x + \cos^2 x = 1 \), we have \( \sin x = \sqrt{1 - t^2} \). Therefore, we can rewrite \( dx \) as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16C|58 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/((1+cos^(2)x))

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

Evaluate the following definite integrals: int_(0)^(pi//2)(1-sinx)/(x+cos x)dx

I_(1) = int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx, I_(2) = int_(0)^(pi)(x^(2)sinx)/((pi^(2)-3pix+3x^(2))(1+cos^(2)x))dx , then

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx