Home
Class 12
MATHS
int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ d...

`int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx`

Text Solution

AI Generated Solution

To solve the definite integral \( I = \int_{0}^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral in terms of sine and cosine: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) \, dx \] This simplifies to: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16C|58 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

Knowledge Check

  • int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

    A
    `sqrt(2)pi`
    B
    `(pi)/2`
    C
    `(pi)/(sqrt(2))`
    D
    `2pi`
  • Similar Questions

    Explore conceptually related problems

    Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)

    int_(0)^(pi//2)(sqrt(cotx))/((1+sqrt(cotx)))dx=?

    int_(0)^(pi//2)sqrt(1+sinx)dx

    int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

    Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx

    Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

    Evaluate the following : int_(0)^(pi//2)(sqrt(tanx))/(sqrt(tanx)+sqrt(cotx))dx