Home
Class 12
MATHS
int(0)^(pi)(x tanx)/((secxcosecx))dx=(pi...

`int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)`

Text Solution

Verified by Experts

`I=int_(0)^(pi)xsin^(2)xdx` and `I=int_(0)^(pi)(pi-x)sin^(2)(pi-x)dx=int_(0)^(pi)(pi-x)sin^(2)xdx`.
`:.2I=pi*int_(0)^(pi)sin^(2)xdx=(pi)/(2)*int_(0)^(pi)/(2)(1-cos2x)dx`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

int_(0)^( pi)(x sec x tan x)/(1+sec^(2)x)dx=(pi^(2))/(4)

Evaluate the following: int_0^pi (xtanx)/(secxcosecx)dx

int_(0)^(pi//4) tan x dx

int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=?

int_0^pi (xtanx)/(secx+tanx)dx

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?