Home
Class 12
MATHS
int(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^...

`int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)`

Text Solution

Verified by Experts

`I=int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx` and `I=int_(0)^(pi)((pi-x)sinx)/((1+cos^(2)x))dx`.
`:.2I=pi*int_(0)^(pi)(sinx)/((1+cos^(2)x))dx`. Now, put `cosx=t`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int_(0)^(pi/3)(x)/(1+secx)dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int_(0)^(pi)(dx)/((5+4cosx))

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_0^pi (xtanx)/(secx+tanx)dx