Home
Class 12
MATHS
int(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)...

`int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} \, dx \) and prove that it equals \( \pi \left( \frac{\pi}{2} - 1 \right) \), we can use the property of definite integrals. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(dx)/((1+sinx))=?

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^(2pi)(sinx+ abs(sinx)) dx =

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx