Home
Class 12
MATHS
int(0)^(pi)log(1+cosx)dx=-pi(log2)...

`int_(0)^(pi)log(1+cosx)dx=-pi(log2)`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_0^{\pi} \log(1 + \cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by using the trigonometric identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)log(1+cos x)dx

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^((pi)/(2))log(cos x)dx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi) x log sinx\ dx