Home
Class 12
MATHS
int(0)^(pi//2)log(tanx+cotx)dx=pi(log2)...

`int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x + \cot x) \, dx \) and show that it equals \( \pi \log 2 \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression inside the logarithm: \[ \tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \] Since \(\sin^2 x + \cos^2 x = 1\), we can simplify: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^( pi/2)log[tan x*cot x]dx

int_(0)^(pi//2)x cot x dx=(pi)/(2)(log2)

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

int_(0)^(pi//2)log (sec x) dx=

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^((pi)/(2))log(sin x)dx