Home
Class 12
MATHS
int(-1)^(1)e^(|x|)dx=2(e-1)...

`int_(-1)^(1)e^(|x|)dx=2(e-1)`

Text Solution

AI Generated Solution

To solve the integral \( \int_{-1}^{1} e^{|x|} \, dx \), we will break it down into two parts based on the definition of the absolute value function. ### Step 1: Break the integral at the point where the absolute value changes The absolute value function \( |x| \) can be expressed as: - \( |x| = -x \) when \( x < 0 \) - \( |x| = x \) when \( x \geq 0 \) Thus, we can split the integral as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(x)dx

int_(-1)^(1)|x|e^(x)dx

int_(-1)^(2) e^(-x)dx

Examples: int_(-1)^(1)e^(|x|)dx

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(-1)^(1)(e^(x)-e^(-x))dx=

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(1)^(4)(1+x+e^(2x))dx

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then