Home
Class 11
MATHS
FInd the value of \ (1+i)^(4) xx (1 + (...

FInd the value of `\ (1+i)^(4) xx (1 + (1)/(i))^(4)`

A

`1`

B

`16`

C

`0`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( (1+i)^{4} \times \left(1 + \frac{1}{i}\right)^{4} \), we will break it down into manageable steps. ### Step 1: Simplify \( \left(1 + \frac{1}{i}\right) \) First, we need to simplify \( 1 + \frac{1}{i} \). To do this, we multiply the numerator and the denominator by \( i \): \[ 1 + \frac{1}{i} = 1 + \frac{1 \cdot i}{i \cdot i} = 1 + \frac{i}{-1} = 1 - i \] ### Step 2: Calculate \( (1+i)^{4} \) Next, we calculate \( (1+i)^{4} \). We can use the binomial theorem or directly calculate it step by step. First, calculate \( (1+i)^{2} \): \[ (1+i)^{2} = 1^{2} + 2 \cdot 1 \cdot i + i^{2} = 1 + 2i - 1 = 2i \] Now, raise \( 2i \) to the power of 2 to find \( (1+i)^{4} \): \[ (2i)^{2} = 4i^{2} = 4(-1) = -4 \] ### Step 3: Calculate \( (1-i)^{4} \) Now, we calculate \( (1-i)^{4} \). Similar to the previous step, we first find \( (1-i)^{2} \): \[ (1-i)^{2} = 1^{2} - 2 \cdot 1 \cdot i + i^{2} = 1 - 2i - 1 = -2i \] Now, raise \( -2i \) to the power of 2 to find \( (1-i)^{4} \): \[ (-2i)^{2} = 4i^{2} = 4(-1) = -4 \] ### Step 4: Combine the results Now we can combine the results from Step 2 and Step 3: \[ (1+i)^{4} \times (1-i)^{4} = (-4) \times (-4) = 16 \] ### Final Answer Thus, the value of \( (1+i)^{4} \times \left(1 + \frac{1}{i}\right)^{4} \) is: \[ \boxed{16} \]

To solve the problem \( (1+i)^{4} \times \left(1 + \frac{1}{i}\right)^{4} \), we will break it down into manageable steps. ### Step 1: Simplify \( \left(1 + \frac{1}{i}\right) \) First, we need to simplify \( 1 + \frac{1}{i} \). To do this, we multiply the numerator and the denominator by \( i \): \[ 1 + \frac{1}{i} = 1 + \frac{1 \cdot i}{i \cdot i} = 1 + \frac{i}{-1} = 1 - i ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 A|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 B|28 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

1) Find the value of i^(i)

Find the value of (1+ i)^(6) + (1-i)^(6)

The value of (1+i)^5 xx (1-i)^5

The value of (1+i)^(4)(1+(1)/(i))^(4) is

Find the value of ( i^(4x + 1 ) - i^(4x-1 ) )/2

Find the value of (1+i)^(3)+(1-i)^(6)

The value of (1+i)^(4)(1-i)^(4) is

The value of (1+i)^(4)(1-i)^(4) is

Find the value of 1+i^2+i^4+i^6