Home
Class 11
MATHS
Find the real values of x and y for whic...

Find the real values of x and y for which `((x-1)/(3+i)+(y-1)/(3-i))=i`.

A

`-4,6`

B

`4,-6`

C

`-2,3`

D

`-3,3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{x-1}{3+i} + \frac{y-1}{3-i} = i\), we will follow these steps: ### Step 1: Multiply by the conjugate We start by multiplying each term by the conjugate of the denominator to eliminate the complex numbers in the denominators. \[ \frac{x-1}{3+i} \cdot \frac{3-i}{3-i} + \frac{y-1}{3-i} \cdot \frac{3+i}{3+i} = i \] This gives us: \[ \frac{(x-1)(3-i)}{(3+i)(3-i)} + \frac{(y-1)(3+i)}{(3-i)(3+i)} = i \] ### Step 2: Simplify the denominators Now, we simplify the denominators: \[ (3+i)(3-i) = 3^2 - i^2 = 9 + 1 = 10 \] So we can rewrite the equation as: \[ \frac{(x-1)(3-i)}{10} + \frac{(y-1)(3+i)}{10} = i \] ### Step 3: Combine the fractions Now we can combine the fractions: \[ \frac{(x-1)(3-i) + (y-1)(3+i)}{10} = i \] ### Step 4: Multiply both sides by 10 To eliminate the fraction, multiply both sides by 10: \[ (x-1)(3-i) + (y-1)(3+i) = 10i \] ### Step 5: Expand the left side Now, we expand both terms on the left side: \[ (3(x-1) - i(x-1)) + (3(y-1) + i(y-1)) = 10i \] This simplifies to: \[ (3x - 3 + 3y - 3) + (-i(x-1) + i(y-1)) = 10i \] ### Step 6: Combine like terms Combining the real and imaginary parts gives us: \[ (3x + 3y - 6) + i(-x + y) = 10i \] ### Step 7: Set real and imaginary parts equal Now, we can equate the real and imaginary parts: 1. Real part: \(3x + 3y - 6 = 0\) 2. Imaginary part: \(-x + y = 10\) ### Step 8: Solve the system of equations Now we solve the system of equations: From the first equation: \[ 3x + 3y = 6 \implies x + y = 2 \quad \text{(1)} \] From the second equation: \[ y = x + 10 \quad \text{(2)} \] Substituting (2) into (1): \[ x + (x + 10) = 2 \implies 2x + 10 = 2 \implies 2x = -8 \implies x = -4 \] Now substitute \(x = -4\) back into (2): \[ y = -4 + 10 = 6 \] ### Final Answer The real values of \(x\) and \(y\) are: \[ x = -4, \quad y = 6 \]

To solve the equation \(\frac{x-1}{3+i} + \frac{y-1}{3-i} = i\), we will follow these steps: ### Step 1: Multiply by the conjugate We start by multiplying each term by the conjugate of the denominator to eliminate the complex numbers in the denominators. \[ \frac{x-1}{3+i} \cdot \frac{3-i}{3-i} + \frac{y-1}{3-i} \cdot \frac{3+i}{3+i} = i \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 A|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 B|28 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

Find the real values of x and y for which (1+i)y^(2)+(6+i)=(2+i)x

Find the real value of x and y if ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i

Find the real values of x and y for which : {:((i),(1-i)x+(1+i)y=1 - 3i,(ii),(x+iy)(3-2i)=(12+5i)),((iii),x+4yi =ix + y + 3,(iv),(1+i)y^(2)+(6+i)=(2+i)x),((v),((x+3i))/((2+iy))=(1-i),(vi),((1+i)x-2i)/((3+i))+((2-3i)y+i)/((3-i))=i):}

Find the real values of x and y,quad if :(x+iy)(2-3i)=4+i

Find real values of x and y for (1+i)y^(2)+(6+i)=(2+i)x

Find the real values of x and y, if (3x-7)+2iy=-5y+(5+x)i

Find the real values of x and y,quad if :((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=

Find the real values of xandy, if (3x-7)+2iy=-5y+(5+x)i

Find the real values of x and y,quad if quad :(1+i)(x+iy)=2-5i

Find the real values of x and y if (i)(3x-7)+2iy=-5y+(5+x)i (ii) (x+iy)(2-3i)=(4+i)