Home
Class 11
MATHS
If z = 2 + i, prove that z^(3) + 3z^(2) ...

If z = 2 + i, prove that `z^(3) + 3z^(2) - 9z + 8 = (1 + 14i)`.

Text Solution

Verified by Experts

We have
`z = 2 + i rArr z - 2 = i rArr (z-2)^(2) = i^(2) rArr z^(2) - 4z + 5 = 0." "...(i)`
`therefore" "z^(3) + 3z^(2) - 9z + 8`
`= z(z^(2)-4z+5) + 7(z^(2) - 4z + 5) + 14z - 27`
`=(z xx 0) + (7 xx 0) + 14z - 27 = (14z - 27)" "["using (i)"]`
`= 14 (2 + i) - 27 = (1 + 14i)`.
Hence, `z^(3) + 3z^(2) - 9z + 8 = (1 + 14i)`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 A|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 B|28 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

If z = 3 + 2i , prove that z^(2) - 6z + 13 = 0 and hence deduce that 3z^(3) - 13z^(2) + 9z + 65 = 0 .

If z_(1) = (1+i) and z_(2) = (-2 + 4i) , prove that Im ((z_(1)z_(2))/(bar(z)_(1)))=2 .

If |z| = z + 3 - 2i , then z equals

If z = -5 + 3i , find the value of (z^(4)+9z^(3)+26z^(2)-14z + 8) .

Let z be a complex number satisfying |z| = 3 |z-1| . Then prove that |z-(9)/(8)| = (3)/(8)

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)