Home
Class 12
MATHS
The value of sin^(-1)((12)/(13)) - sin ^...

The value of `sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5))` is equal to

A

`pi-sin ^(-1) ((63)/(65))`

B

`(pi)/(2) - sin ^(-1)((56)/(65))`

C

`(pi)/(2) - cos ^(-1)((9)/(65)) `

D

`pi - cos ^(-1)((3)/(65))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \), we can use the formula for the difference of two inverse sine functions: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) \] ### Step 1: Identify \( x \) and \( y \) Here, we have: - \( x = \frac{12}{13} \) - \( y = \frac{3}{5} \) ### Step 2: Calculate \( \sqrt{1 - y^2} \) and \( \sqrt{1 - x^2} \) First, we calculate \( \sqrt{1 - y^2} \): \[ y^2 = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \] \[ 1 - y^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] \[ \sqrt{1 - y^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Next, we calculate \( \sqrt{1 - x^2} \): \[ x^2 = \left(\frac{12}{13}\right)^2 = \frac{144}{169} \] \[ 1 - x^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169} \] \[ \sqrt{1 - x^2} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] ### Step 3: Substitute into the formula Now we substitute into the formula: \[ \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{12}{13} \cdot \frac{4}{5} - \frac{3}{5} \cdot \frac{5}{13}\right) \] ### Step 4: Calculate the expression inside the inverse sine Calculating the terms: \[ \frac{12}{13} \cdot \frac{4}{5} = \frac{48}{65} \] \[ \frac{3}{5} \cdot \frac{5}{13} = \frac{15}{65} \] Now, substituting these back: \[ \sin^{-1}\left(\frac{48}{65} - \frac{15}{65}\right) = \sin^{-1}\left(\frac{33}{65}\right) \] ### Final Answer Thus, the value of \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \) is: \[ \sin^{-1}\left(\frac{33}{65}\right) \]

To solve the problem \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \), we can use the formula for the difference of two inverse sine functions: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) \] ### Step 1: Identify \( x \) and \( y \) Here, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise PROPERTIES OF INVERSE FUNCTIONS (INTEGER ANSWER TYPE QUESTION )|1 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise IRRATIONAL FUNCTION & PARTIAL FRACTION|4 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((12)/(13))+sin^(-1)((3)/(5)) =

sin[3sin^(-1)((1)/(5))] is equal to

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

The value of (2 tan ^(-1) ((3)/(5)) + sin ^(-1) (( 5)/( 13))) is equal to:

"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is equal to

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

The value of 169e^(i)(pi+sin^(-1)((12)/(13))+cos^(-1)((5)/(13))) is