Home
Class 12
MATHS
A,B,C and d are four points in a pla...

A,B,C and d are four points in a plane with position vectors `overset(to)(a),overset(to)(b),overset(to)(c )` and `overset(to)(d)` respectively such that `(overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0` The point D then is the .... of the `DeltaABC`

Text Solution

Verified by Experts

The correct Answer is:
Orthocentre

As `(vec(a) - vec(d)) . (vec(b) -vec(c )) = (vec(b) -vec(d)) . (vec(c )-vec(a)) =0`
`rArr AD bot BC "and " BD bot CA`
which clearly represents from figure that D is orthocentre of `DeltaABC`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Analytical & Descriptive Questions)|7 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Interger Answer Type Questions )|2 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Numerical Value|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?

For non- zero vectors overset(to)(a) , overset(to)(b), overset(to)(c )|,(overset(to)(a)xx overset(to)(b)), Overset(to)(c )| =|overset(to)(a)||overset(to)(b)||overset(to)(c )| holds if and only if

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

The points with position vectors overset(to)(a)+overset(to)(b),overset(to)(a)-overset(to)(b) and overset(to)(a)+koverset(to)(b) are collinear for all real values of k.

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is