Home
Class 12
MATHS
find 3- dimensional vectors overset(t...

find 3- dimensional vectors `overset(to)(v)_(1) , overset(to)(v)_(2), overset(to)(v)_(3)` satisfying
`overset(to)(v)_(1),overset(to)(v)_(1) =4, overset(to)(v)_(1).overset(to)(v)_(2)=-2overset(to)(v)_(1).overset(to)(v)_(3)-6`
`overset(to)(v)_(2).overset(to)(v)_(2)=2,overset(to)(v)_(2).overset(to)(v)_(3) =-5 , overset(to)(v)_(3).overset(to)(v)_(3)=29`

Text Solution

Verified by Experts

The correct Answer is:
`overset(to)(v)_(1) = 2hat(i) overset(to)(v)_(2) =- hat(i) + hat(j) " and " overset(to)(v)_(3) = 3hat(i) +2hat(j) +-4 hat(k)`

We have `|vec(to)_(1)| =2,|vec(v)_(2)|=sqrt(2) " and " |vec(V)_(3)| = sqrt(39)` If 0 is the angle between `vec(v)_(1)" and " vec(v)_(2)` then
`2sqrt(2) " cos " 0 = - 2`
`rArr " cos " 0=- (1)/(sqrt(2))`
`rArr 0= 135^(@)` Since any two vectors are always coplanar and data is not sufficient so we can assume `vec(v)_(1) " and " vec(v)_(2)` in x-y plane.
`vec(v)_(1) = 2hat(i)`
`vec(v)_(2) =- hat(i) + hat(j)`

`" and " vec(v)_(3) =alpha hat(i) + beta hat(j) + gamma hat(k)`
`" Since " vec(v)_(3) - vec(v)_(1) =6 = 2alpha rArr alpha =3`
Also ` vec(v)_(3) "."vec(v)_(2) =-5 = alpha +- beta rArr beta = +- 2`
`" and " vec(v)"."vec(3) = 29 = alpha^(2) + beta^(2) + gamma^(2) rArr gamma = +- 4`
Hence ` vec(v)_(3) = 3hat(i) +- 2hat(j) +- 4hat(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Interger Answer Type Questions )|2 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I)|12 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Fill in the Blanks)|3 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is