Home
Class 12
MATHS
Let vec(A),vec(B),vec(C ) be vectors of...

Let `vec(A),vec(B),vec(C )` be vectors of length 3, 4, 5, respectively Let `overset(to)(A)` be perpendicular to `overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C )` to `overset(to)(A) +overset(to)(B)` then the length of vector `overset(to)(A) +overset(to)(B)+overset(to)(C )` is .......

Text Solution

Verified by Experts

The correct Answer is:
`(5sqrt(2))`

Given `|vec(A)| =3, |vec(B)| =4, |vec(C )|=5`
Since `vec(A)"."(vec(B)+vec(C )) =vec(B). (vec(C ) +vec(A)) = vec(C ) . (vec(A) +vec(B)) =0`
`:. |vec(A) +vec(B) + vec(C )|^(2) =|vec(A)|+|vec(B)|^(2)+|vec(C )|^(2)`
`+2(vec(A)"."vec(B)+vec(B)"."vec(C ) +vec(C ) "."vec(A))`
`=9 +16 +25 +0`
[from Eq. (i) , `vec(A)"."vec(B) +vec(B)"."vec(C) +vec(C )"."vec(A)=0]`
`:. |vec(A) + vec(B) + vec(C )|^(2)=50`
`rArr |vec(A)+vec(B)+vec(C )|=5 sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Analytical & Descriptive Questions)|7 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Interger Answer Type Questions )|2 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Numerical Value|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is