Home
Class 12
MATHS
Let alpha in R and the three vectors a...

Let `alpha in R` and the three vectors
`a=alpha hat(i) + hat(j) +3hat(k)` , `b=2hat(i) +hat(j) -alpha hat(k)`
and `c= alpha hat(i) -2hat(j) +3hat(k)` . Then the set
`S={alpha: a,b " and c are coplanar"}`

A

is singleton

B

is empty

C

contains exactly twol positive numbers

D

contains exactly two numbers only one of which is positive

Text Solution

Verified by Experts

The correct Answer is:
B

Given the vectors are
` a= alpha hat(i) + hat(j) + 3hat(k)`
` b= 2hat(i) + hat(j) - alpha hat(k)`
`" and " c= alpha hat(i) - 2hat(j) + 3hat(k)`
Clearly `[a,b,c] = |{:(alpha,,1,,3),(2,,1,,-alpha),(alpha,,-2,,3):}|`
`=alpha (3 -2 alpha) - 1 (6+ alpha^(2)) + 3 (-4 -alpha)`
`=- 3alpha^(2) -18 =- 3 (alpha^(2) +6)`
`:' ` There is no value of `alpha` for which `-3(alpha^(2)+6)` becomes zero so = `|{:(alpha ,,1,,3),(2,,1,,-alpha),(alpha,,-2,,3):}|[a,b,c] ne 0`
`rArr` vectors a,b and c are not coplanar for any value `a in R`
So the set `={alpha : a,b` and c are coplanar} is empty set .
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I) (Assertion and Reason)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Interger Answer Type Questions )|2 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

Let alpha in R and the three vectors vec a=alphahat i+hat j+3hat k,vec b=2hat i+hat j-alphahat k and vec c=alphahat i-2hat j+3hat k. Then the set S={alpha:vec a,vec b and vec c are coplanar }

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) + beta hat(j) - alpha hat(k) and vec(c) = - alpha hat(i) - 2 hat(j) + hat(k) , where alpha and beta are integers. If vec(a)* vec(b) = - 1 and vec(b) * vec(c) = 10 " then " ( vec(a) xx vec(b)) * vec(c) is equal to _____