Home
Class 12
MATHS
Let overset(to)(a),overset(to)(b),overse...

Let `overset(to)(a),overset(to)(b),overset(to)(c )` be unit vectors such that `overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0).`
Which one of the following is correct ?

A

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)=overset(to)(0)`

B

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)neoverset(to)(0)`

C

`overset(to)(b)xxoverset(to)(b)=overset(to)(b) xx overset(to)(c) =overset(to)(a)xxoverset(to)(c)=overset(to)(0)`

D

`overset(to)(a)xxoverset(to)(b),overset(to)(b)xxoverset(to)(c),overset(to)(c)xxoverset(to)(a)` are mutually perpendicular

Text Solution

Verified by Experts

The correct Answer is:
B

Since `vec(a) ,vec(b) , vec( c) ` are unit vectors and `vec(a) + vec(b) + vec( c) =vec(0)` then `vec(a) , vec(b) , vec( c) ` represent and aquilateral triangle .
`:. , vec(a) xx vec(b) = vec(b) xx vec(c ) = vec(c ) xx vec(a) be vec(0) `
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I) (Assertion and Reason)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Interger Answer Type Questions )|2 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

Let the vectors overset(to)(a), overset(to)(b), overset(to)( c) " and " overset(to)(d) be such that (overset(to)(a) xx overset(to)(b)) xx ( overset(to)(c ) xx overset(to)(d)) = overset(to)(0) . " If " P_(1) " and " P_(2) are planes determined by the pairs of vectors overset(to)(a) , overset(to)(b) " and " oerset(to)(c ) , overset(to)(d) respectively then the angle between P_(1) " and "P_(2) is

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) " and " overset(to)(b)_(1) are two unit vectors such that overset(to)(a) +2overset(to)(b) and 5overset(to)(a) -4overset(to)(b) are perpendicular to each other then the angle between overset(to)(a) " and " overset(to)(b) is

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......