Home
Class 12
MATHS
Let overset(to)(a) , overset(to)(b) " an...

Let `overset(to)(a) , overset(to)(b) " and " overset(to)( c)` be three non-zero vectors such that no two of them are collinear and `(overset(to)(a) xx overset(to)(b)) xx overset(to)( c) = (1)/(3) |overset(to)(b)||overset(to)(c )|overset(to)(a).`
If 0 is the angle between vectors `overset(to)(b) " and " overset(to)(c )` then a value of sin 0 is

A

`(2sqrt(2))/(3)`

B

`(-sqrt(2))/(3)`

C

`(2)/(3)`

D

`(-2sqrt(3))/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given `(vec(a) xx vec(b)) xx vec(c ) = (1)/(3) |b||vec(c )|vec(a)`
`rArr -vec(c ) xx (vec(a) xx vec(b)) = (1)/(3) |vec(b)||vec(c )|vec(a)`
`rArr -(vec(c )". " vec(b)) "." vec(a) + (vec(c ) "." vec(b)) vec(b) = (1)/(3) |vec(b)||vec(c )|vec(a)`
`rArr [ (1)/(3) |vec(b)||vec(c )|+ (vec(c ) ". " vec(b))] a = (vec(c ) ". " vec(a)) vec(b)`
Since a and b are not collinear .
`:. vec(c ) ". " vec(b) + (1)/(3) |vec(b)||vec(c )| =0 " and " vec(c ) ". " vec(a) =0`
` rArr |vec(b) ||vec(c )| cos 0 + (1)/(3) |vec(b) ||vec(c)| =0 rArr |vec(b)||vec(c )| (cos 0+ (1)/(3)) =0`
` rArr cos 0 + (1)/(3) =0 [ :' |b| ne 0 , |c | ne 0]`
`rArr cos 0= (1)/(3) rArr sin 0 = (sqrt(8))/(3) = (2sqrt(2))/(3)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Numerical Value)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I) (Analytical & Descriptive Questions)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

For non- zero vectors overset(to)(a) , overset(to)(b), overset(to)(c )|,(overset(to)(a)xx overset(to)(b)), Overset(to)(c )| =|overset(to)(a)||overset(to)(b)||overset(to)(c )| holds if and only if

Let overset(to)(a) , overset(to)(b) " and " overset(to)(c ) be three vectors having magnitudes 1 , and 2 respectively . If overset(to)(a) xx (overet(to)(a) xx overset(to)(c ) ) + overset(to)(b) = overset(to)(0) then the actue angle between overset(to)(a) " and " overset(to)(c ) is ......

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to