Home
Class 12
MATHS
Let overset(to)(a) =2hat(i) + hat(j) -2h...

Let `overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) ` is a vectors such that `|overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2)` and the angle between `(overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )|` is equal to

A

`(2)/(3)`

B

`(3)/(2)`

C

`2`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
B

Note in this question vectors `vec(c ) ` is not given therfore we cannot apply the formulae`vec(a) xx vec(b) xx vec(c )` (vector triple product )
Now `|(vec(a) xx vec(b)) xx vec(c ) | = | vec(a) xx vec(b)||vec(c )| sin 30^(@)`
Again `|vec(a) xxvec(b) | = |{:(hat(i) ,,hat(j) ,,hat(k)),(2,,1,,-2),(1,,1,,1):}|=2hat(i) -2hat(j) + hat(k)`
`rArr |vec(a) xx vec(b) | = sqrt(2^(2) + (-2)^(2)+1) = sqrt(4+4+1) = sqrt(9) =3`
Since `|vec(c )- vec(a)| = 2 sqrt(2)`
` rArr |vec(c )- vec(a) |^(2)=8`
`rArr (vec(c )- vec(a)) ". " (vec(c ) - vec(a)) =8`
`rArr vec(c ) ". " vec(c ) - vec( c) vec(a) - vec(a) "." vec(c ) + vec(a) ". " vec(a) =8`
` rArr |vec(c)|^(2)+ |vec(a)|^(2)- 2 vec(a) ". " vec(c ) =8`
` rArr |vec(c )|^(2) -2|vec(c)|+ 1=0`
`rArr (|vec(c )|-1)^(2) =0 rArr |vec(c )|=1`
From Eq. (i) , `|(vec(a) xx vec(b)) xx vec(C )| = (3) (1) . ((1)/(2)) = (3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Numerical Value)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I) (Analytical & Descriptive Questions)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

Let overset(to)(a) = hat(i) - hat(j) , overset(to)(b) - hat(k) , overset(to)( c) - hat(k) - hat(i) . If overset(to)(d) is a unit vector such that overset(to)(a) , Overset(to)(d) =0= [ overset(to)(b) overset(to)(c ) overset(to)d)] then overset(to)(d) equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

Let overset(to)(a) =2hat(i) +hat(j) + hat(k), overset(to)(b) =hat(i) + 2hat(j) -hat(k) and a unit vector overset(to)(c ) be coplanar. If overset(to)(c ) is perpendicular to overset(to)(a) " then " overset(to)(c ) is equal to

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

Let overset(to)(a) , overset(to)(b) " and " overset(to)(c ) be three vectors having magnitudes 1 , and 2 respectively . If overset(to)(a) xx (overet(to)(a) xx overset(to)(c ) ) + overset(to)(b) = overset(to)(0) then the actue angle between overset(to)(a) " and " overset(to)(c ) is ......

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to