Home
Class 11
MATHS
(sin x + sin 3x)/(cos x - cos 3x) = ?...

`(sin x + sin 3x)/(cos x - cos 3x) = ?`

A

`tan x`

B

`tan 2x`

C

`cot x`

D

`cot 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin x + \sin 3x) / (\cos x - \cos 3x)\) and prove that it is equal to \(\cot x\), we can follow these steps: ### Step 1: Apply the identities for \(\sin 3x\) and \(\cos 3x\) We know the identities: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] Substituting these identities into the expression, we get: \[ \frac{\sin x + (3 \sin x - 4 \sin^3 x)}{\cos x - (4 \cos^3 x - 3 \cos x)} \] ### Step 2: Simplify the numerator and denominator The numerator simplifies to: \[ \sin x + 3 \sin x - 4 \sin^3 x = 4 \sin x - 4 \sin^3 x \] The denominator simplifies to: \[ \cos x - (4 \cos^3 x - 3 \cos x) = \cos x + 3 \cos x - 4 \cos^3 x = 4 \cos x - 4 \cos^3 x \] Thus, we can rewrite the expression as: \[ \frac{4 \sin x - 4 \sin^3 x}{4 \cos x - 4 \cos^3 x} \] ### Step 3: Factor out common terms Factoring out \(4\) from both the numerator and the denominator gives us: \[ \frac{4(\sin x - \sin^3 x)}{4(\cos x - \cos^3 x)} \] We can cancel \(4\) from the numerator and denominator: \[ \frac{\sin x - \sin^3 x}{\cos x - \cos^3 x} \] ### Step 4: Factor the remaining expressions We can factor \(\sin x\) and \(\cos x\) out of the numerator and denominator: \[ \sin x(1 - \sin^2 x) \text{ and } \cos x(1 - \cos^2 x) \] Using the Pythagorean identity, \(1 - \sin^2 x = \cos^2 x\) and \(1 - \cos^2 x = \sin^2 x\), we rewrite the expression as: \[ \frac{\sin x \cos^2 x}{\cos x \sin^2 x} \] ### Step 5: Simplify the expression Now we can simplify: \[ \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \] Thus, we have: \[ \cot x \] ### Conclusion We have shown that: \[ \frac{\sin x + \sin 3x}{\cos x - \cos 3x} = \cot x \] Hence, the expression is proved. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15D)|21 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15E)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

Prove that (sin 3x - sin x) /( cos x - cos 3x) = cot 2x

Knowledge Check

  • Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

    A
    `(1+sqrt(69)//6`
    B
    `-1-sqrt(69)//6`
    C
    `(-3 +sqrt(69))/(6)`
    D
    `(3-sqrt(69))/(3)`
  • Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) The number of solutions common to (i) and (ii) is

    A
    0
    B
    1
    C
    finite
    D
    infinite
  • Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If tan alpha , tan beta satisfy (i) and cos gamma , cos delta satisfy (ii) , then tan alpha * tan beta + cos gamma + cos delta can be equal to

    A
    `-1`
    B
    `-(5)/(3)+(2)/(sqrt(13))`
    C
    `(5)/(3)-(2)/(sqrt(13)) `
    D
    `(5)/(3)+(2)/(sqrt(13))`
  • Similar Questions

    Explore conceptually related problems

    Prove : (sin 7x +sin 3x)/(cos 7x+cos 3x) = tan 5x

    (sin x + sin 3x + sin 5x)/(cos x + cos 3x + cos 5x) = tan 3x

    (( sin 7x + sin 5x)+(sin 9x + sin 3x))/((cos 7x + cos 5x)+(cos 9x+ cos 3x)) =tan 6x

    Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

    The general solution of sinx - 3 sin 2 x + sin 3x = cos x - 3cos 2x + cos 3 x is