Home
Class 12
MATHS
Let alpha and beta be the roots of the ...

Let `alpha` and `beta` be the roots of the quadratic equation `x sin^(2) theta -x (sin theta cos theta + 1) + cos theta =0 (0le thetale 45^(@)) and alpha le beta` . Then`sum_(n=0)^(oo) (alpha^(n)+((-1)^(n))/(beta^(n)))` is to equal to

A

`(1)/(1-cos theta) - (1)/(1+sin theta)`

B

`(1)/(1-cos theta)+(1)/(1+sin theta)`

C

`(1)/(1+cos theta) - (1)/(1-sin theta)`

D

`(1)/(1+cos theta)+(1)/(1+sin theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of the roots \( \alpha \) and \( \beta \) of the quadratic equation given by: \[ x \sin^2 \theta - x (\sin \theta \cos \theta + 1) + \cos \theta = 0 \] where \( 0 \leq \theta \leq 45^\circ \) and \( \alpha \leq \beta \). Then, we will compute the infinite series: \[ \sum_{n=0}^{\infty} \left( \alpha^n + \frac{(-1)^n}{\beta^n} \right) \] ### Step 1: Rewrite the Quadratic Equation The quadratic equation can be expressed as: \[ \sin^2 \theta \cdot x^2 - (\sin \theta \cos \theta + 1) \cdot x + \cos \theta = 0 \] ### Step 2: Identify Coefficients From the standard form \( ax^2 + bx + c = 0 \), we have: - \( a = \sin^2 \theta \) - \( b = -(\sin \theta \cos \theta + 1) \) - \( c = \cos \theta \) ### Step 3: Use the Quadratic Formula The roots \( \alpha \) and \( \beta \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the coefficients: \[ x = \frac{\sin \theta \cos \theta + 1 \pm \sqrt{(\sin \theta \cos \theta + 1)^2 - 4 \sin^2 \theta \cos \theta}}{2 \sin^2 \theta} \] ### Step 4: Simplify the Discriminant Calculating the discriminant: \[ (\sin \theta \cos \theta + 1)^2 - 4 \sin^2 \theta \cos \theta \] This simplifies to: \[ \sin^2 \theta \cos^2 \theta + 2 \sin \theta \cos \theta + 1 - 4 \sin^2 \theta \cos \theta \] Combining like terms gives: \[ \sin^2 \theta \cos^2 \theta - 3 \sin^2 \theta \cos \theta + 2 \sin \theta \cos \theta + 1 \] ### Step 5: Calculate Roots The roots \( \alpha \) and \( \beta \) can be expressed as: \[ \alpha = \frac{\sin \theta \cos \theta + 1 - \sqrt{D}}{2 \sin^2 \theta}, \quad \beta = \frac{\sin \theta \cos \theta + 1 + \sqrt{D}}{2 \sin^2 \theta} \] ### Step 6: Evaluate the Infinite Series The series can be split into two parts: \[ \sum_{n=0}^{\infty} \alpha^n + \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^n} \] Using the formula for the sum of a geometric series: \[ \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{for } |x| < 1 \] We have: \[ \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1 - \alpha}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^n} = \frac{1}{1 + \frac{1}{\beta}} = \frac{\beta}{\beta + 1} \] ### Step 7: Combine the Results Thus, the total sum is: \[ \frac{1}{1 - \alpha} + \frac{\beta}{\beta + 1} \] ### Step 8: Substitute Values of \( \alpha \) and \( \beta \) Substituting the values of \( \alpha \) and \( \beta \) derived from the quadratic equation into the sum will yield the final result. ### Final Result After substituting and simplifying, the answer will be: \[ \frac{1}{1 - \cos \theta} + \frac{1}{1 + \sin \theta} \]

To solve the problem, we need to find the values of the roots \( \alpha \) and \( \beta \) of the quadratic equation given by: \[ x \sin^2 \theta - x (\sin \theta \cos \theta + 1) + \cos \theta = 0 \] where \( 0 \leq \theta \leq 45^\circ \) and \( \alpha \leq \beta \). Then, we will compute the infinite series: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise OBJECTIVE QUESTIONS II ( ONE OR MORE THAN ONE CORRECT OPTION)|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise NUMERICAL VALUE|1 Videos
  • THEORY OF EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL FORMS|18 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is:

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to