Home
Class 12
MATHS
The value of lim(xrarr0) {1^((1)/(sin^(2...

The value of `lim_(xrarr0) {1^((1)/(sin^(2)x)+)2^((1)/(sin^(2)x))+3^((1)/(sin^(2)x))+.....+n^((1)/sin^(2)x)}^(sin^2x)`, is

A

`oo`

B

`0`

C

`n`

D

`(n(n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 0} \left( 1^{\frac{1}{\sin^2 x}} + 2^{\frac{1}{\sin^2 x}} + 3^{\frac{1}{\sin^2 x}} + \ldots + n^{\frac{1}{\sin^2 x}} \right)^{\sin^2 x} \] ### Step 1: Rewrite the expression We can rewrite the expression inside the limit as follows: \[ S = 1^{\frac{1}{\sin^2 x}} + 2^{\frac{1}{\sin^2 x}} + 3^{\frac{1}{\sin^2 x}} + \ldots + n^{\frac{1}{\sin^2 x}} \] Thus, we need to evaluate: \[ \lim_{x \to 0} S^{\sin^2 x} \] ### Step 2: Analyze the limit as \( x \to 0 \) As \( x \to 0 \), \( \sin^2 x \) approaches 0. Therefore, we need to analyze the behavior of \( S \) as \( x \to 0 \). ### Step 3: Evaluate \( S \) The term \( k^{\frac{1}{\sin^2 x}} \) for each \( k \) (where \( k = 1, 2, \ldots, n \)) approaches infinity as \( x \to 0 \). Hence, we can express \( S \) as: \[ S = 1^{\frac{1}{\sin^2 x}} + 2^{\frac{1}{\sin^2 x}} + \ldots + n^{\frac{1}{\sin^2 x}} \approx 2^{\frac{1}{\sin^2 x}} + 3^{\frac{1}{\sin^2 x}} + \ldots + n^{\frac{1}{\sin^2 x}} \] As \( x \to 0 \), the dominant term in \( S \) will be \( n^{\frac{1}{\sin^2 x}} \). ### Step 4: Simplify \( S \) Thus, we can approximate: \[ S \approx n^{\frac{1}{\sin^2 x}} \] ### Step 5: Substitute back into the limit Now, substituting back into our limit, we have: \[ \lim_{x \to 0} S^{\sin^2 x} \approx \lim_{x \to 0} \left(n^{\frac{1}{\sin^2 x}}\right)^{\sin^2 x} \] This simplifies to: \[ \lim_{x \to 0} n^{\sin^2 x \cdot \frac{1}{\sin^2 x}} = \lim_{x \to 0} n^1 = n \] ### Final Answer Thus, the value of the limit is: \[ \boxed{n} \]

To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 0} \left( 1^{\frac{1}{\sin^2 x}} + 2^{\frac{1}{\sin^2 x}} + 3^{\frac{1}{\sin^2 x}} + \ldots + n^{\frac{1}{\sin^2 x}} \right)^{\sin^2 x} \] ### Step 1: Rewrite the expression We can rewrite the expression inside the limit as follows: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Exercise|99 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

Evaluate: lim_(n rarr0)(1^(1/sin^(2)x)+2sin^((1)/(2sin^(2)x))+...+n^(1/sin^(2)x))^(sin^(2)x)

The value of lim_(xrarr0)(sin^(2)x+cosx-1)/(x^(2)) is

The value of lim_(xrarr2)(e^(3x-6)-1)/(sin(2-x)) , is

lim_(x rarr0)((1)/(x sin^(-1)x)-(1-x^(2))/(x^(2)))

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Evaluate lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x) .

lim_(xrarr0)(sin (pisin^(2)x))/(x^(2))=

The value of lim_(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)] is :

OBJECTIVE RD SHARMA-LIMITS-Section I - Solved Mcqs
  1. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  2. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  3. The value of lim(xrarr0) {1^((1)/(sin^(2)x)+)2^((1)/(sin^(2)x))+3^((1)...

    Text Solution

    |

  4. lim(xrarr pi//2)([x/2])/(loge(sinx)) (where [.] denotes the greatest i...

    Text Solution

    |

  5. If [.] denotes the greatest integer function, then lim(xrarr0) [(x^2)/...

    Text Solution

    |

  6. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  7. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  8. If f(x)=|{:(sin x,cosx,tanx),(x^3,x^2,x),(2x,1,1):}|then lim(xrarr0)(f...

    Text Solution

    |

  9. lim(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero posit...

    Text Solution

    |

  10. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  11. Let the sequence <<bn>> real numbers satisfies the recurrence relation...

    Text Solution

    |

  12. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  13. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  14. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  15. Let f: R-> R be a positive increasing function with lim(x->oo) f(3x)/f...

    Text Solution

    |

  16. Let f: R->[0,oo) be such that lim(x->5) f(x) exists and lim(x->5) ((f(...

    Text Solution

    |

  17. Let f(theta)=(1)/(tan^9 theta){(1+tantheta)^10+(2+tantheta)^10+....+(2...

    Text Solution

    |

  18. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  19. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  20. Let m and n be two positive integers greater than 1.If lim(alpha->0) (...

    Text Solution

    |