Home
Class 12
MATHS
lim(xrarr oo) (x^(2^(32))-2^32x+4^16-1)/...

`lim_(xrarr oo) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2)` is equal to

A

`2^63-2^31`

B

`2^64-2^31`

C

`2^62-2^31`

D

`2^65- 2^33`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{x^{2^{32}} - 2^{32}x + 4^{16} - 1}{(x-1)^2} \), we will follow these steps: ### Step 1: Rewrite the expression First, we notice that \( 4^{16} = (2^2)^{16} = 2^{32} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{x^{2^{32}} - 2^{32}x + 2^{32} - 1}{(x-1)^2} \] ### Step 2: Substitute \( n = 2^{32} \) Let \( n = 2^{32} \). The limit now becomes: \[ \lim_{x \to 1} \frac{x^n - nx + n - 1}{(x-1)^2} \] ### Step 3: Factor the numerator We can factor the numerator: \[ x^n - nx + n - 1 = (x^n - 1) - n(x - 1) \] Thus, we rewrite the limit: \[ \lim_{x \to 1} \frac{(x^n - 1) - n(x - 1)}{(x-1)^2} \] ### Step 4: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( x \to 1 \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: - The derivative of the numerator \( (x^n - 1 - n(x - 1)) \) is \( nx^{n-1} - n \). - The derivative of the denominator \( (x-1)^2 \) is \( 2(x-1) \). Now we have: \[ \lim_{x \to 1} \frac{nx^{n-1} - n}{2(x-1)} \] ### Step 5: Apply L'Hôpital's Rule again As \( x \to 1 \), the numerator still approaches 0. We apply L'Hôpital's Rule again: - The derivative of the numerator \( nx^{n-1} - n \) is \( n(n-1)x^{n-2} \). - The derivative of the denominator \( 2(x-1) \) is \( 2 \). Now we have: \[ \lim_{x \to 1} \frac{n(n-1)x^{n-2}}{2} \] ### Step 6: Evaluate the limit Substituting \( x = 1 \): \[ \frac{n(n-1)}{2} = \frac{2^{32}(2^{32} - 1)}{2} = 2^{31}(2^{32} - 1) \] ### Final Result Thus, the limit evaluates to: \[ 2^{31}(2^{32} - 1) = 2^{63} - 2^{31} \] ### Answer The limit is: \[ \boxed{2^{63} - 2^{31}} \]

To solve the limit \( \lim_{x \to 1} \frac{x^{2^{32}} - 2^{32}x + 4^{16} - 1}{(x-1)^2} \), we will follow these steps: ### Step 1: Rewrite the expression First, we notice that \( 4^{16} = (2^2)^{16} = 2^{32} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{x^{2^{32}} - 2^{32}x + 2^{32} - 1}{(x-1)^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Exercise|99 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2)) is equal to

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(x rarr oo)((2x+1)^(40)(4x-1)^(5))/((2x+3)^(45)) is equal to (a)16 (b) 24(c)32 (d) 8

lim_(x rarr oo)(x^(2)sin((1)/(x))+x+1)/(x^(2)+x+1) is equal to

lim_(x rarr oo)((x^(2)-2x+1)/(x^(2)-4x+2))^(x) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

OBJECTIVE RD SHARMA-LIMITS-Section I - Solved Mcqs
  1. lim(xrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  2. lim(x->oo) (cot^-1(sqrt(x+1)-sqrtx))/(sec^-1{((2x+1)/(x-1))^x)} is equ...

    Text Solution

    |

  3. lim(xrarr oo) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  4. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  5. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  6. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  7. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  8. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  9. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  10. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  11. If the normal to differentiable curve y = f(x) at x = 0 be given by th...

    Text Solution

    |

  12. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  13. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  14. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  15. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  16. lim(xto oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  17. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  18. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  19. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e nt h e ...

    Text Solution

    |

  20. The value of lim(xrarr oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//...

    Text Solution

    |