Home
Class 12
MATHS
If veca=hati+hatj+hatk, veca.vecb=1 and ...

If `veca=hati+hatj+hatk, veca.vecb=1` and `vecaxxvecb=hatj-hatk` then `vecb`

A

`hati-hatj+hatk`

B

`2hatj-hatk`

C

`hati`

D

`2hati`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{b}\) given the conditions: 1. \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) 2. \(\vec{a} \cdot \vec{b} = 1\) 3. \(\vec{a} \times \vec{b} = \hat{j} - \hat{k}\) ### Step 1: Write down the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] Let \(\vec{b} = x\hat{i} + y\hat{j} + z\hat{k}\), where \(x\), \(y\), and \(z\) are the components of \(\vec{b}\). ### Step 2: Use the dot product condition From the condition \(\vec{a} \cdot \vec{b} = 1\): \[ (\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 1 \] Calculating the dot product: \[ x + y + z = 1 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product condition Now, we calculate \(\vec{a} \times \vec{b}\): \[ \vec{a} \times \vec{b} = (\hat{i} + \hat{j} + \hat{k}) \times (x\hat{i} + y\hat{j} + z\hat{k}) \] Using the determinant method for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating the minors: \[ = \hat{i}(1z - 1y) - \hat{j}(1z - 1x) + \hat{k}(1y - 1x) \] \[ = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} \] Setting this equal to \(\hat{j} - \hat{k}\): \[ (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} = \hat{j} - \hat{k} \] ### Step 4: Equate coefficients From the equation above, we can equate coefficients: 1. For \(\hat{i}\): \(z - y = 0 \quad \Rightarrow \quad z = y \quad \text{(Equation 2)}\) 2. For \(\hat{j}\): \(- (z - x) = 1 \quad \Rightarrow \quad z - x = -1 \quad \Rightarrow \quad x = z + 1 \quad \text{(Equation 3)}\) 3. For \(\hat{k}\): \(y - x = -1 \quad \Rightarrow \quad y - x = -1 \quad \Rightarrow \quad x = y + 1 \quad \text{(Equation 4)}\) ### Step 5: Substitute and solve From Equation 2, we have \(z = y\). Substitute \(z\) in Equation 3: \[ x = y + 1 \] Now substitute \(x\) and \(z\) in Equation 1: \[ (y + 1) + y + y = 1 \] \[ 3y + 1 = 1 \quad \Rightarrow \quad 3y = 0 \quad \Rightarrow \quad y = 0 \] Then from \(y = 0\): \[ z = 0 \quad \text{and} \quad x = 1 \] ### Final Result Thus, we have: \[ \vec{b} = 1\hat{i} + 0\hat{j} + 0\hat{k} = \hat{i} \] ### Summary The vector \(\vec{b}\) is: \[ \vec{b} = \hat{i} \]

To solve the problem, we need to find the vector \(\vec{b}\) given the conditions: 1. \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) 2. \(\vec{a} \cdot \vec{b} = 1\) 3. \(\vec{a} \times \vec{b} = \hat{j} - \hat{k}\) ### Step 1: Write down the vectors We have: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: veca.(vecb+vecc)=veca.vecb+veca.vecc .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: (veca+vecb).(veca-vecb)=a^2-b^2 .

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

If veca=hati-2hatj+3hatk and vecb=2hati+3hatj-5hatk then find vecaxxvecb and verify that vecaxxvecb is perpendicular to each one of veca and vecb .

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  2. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  3. If veca=hati+hatj+hatk, veca.vecb=1 and vecaxxvecb=hatj-hatk then vecb

    Text Solution

    |

  4. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  5. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  6. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  7. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. If vecc is a vector such...

    Text Solution

    |

  8. If veca, vecb, vecc are three non colanar, non =null vectors, and vecr...

    Text Solution

    |

  9. The acute angle betwene any two faces of a regular tetrahedron is

    Text Solution

    |

  10. The acute angle that the vector 2hati-2hatj+2hatk makes with the plane...

    Text Solution

    |

  11. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  12. The three vectors hati+hatj, hatj+hatk, hatk+hati taken two at a time ...

    Text Solution

    |

  13. Let G(1),G(2),G(3) be the centroids of the triangular faces OBC, OCA, ...

    Text Solution

    |

  14. Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr....

    Text Solution

    |

  15. Let vecV=2hati+hatj-hatk and vecW=hati+3hatk. It vecU is a unit vector...

    Text Solution

    |

  16. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  17. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  18. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  19. Given |veca|=|vecb|=1 and |veca+vecb|=sqrt(3). If vecc be a vector suc...

    Text Solution

    |

  20. If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(...

    Text Solution

    |