Home
Class 12
MATHS
Let veca=-hati-hatk, vecb=-hati+hatj and...

Let `veca=-hati-hatk, vecb=-hati+hatj` and `vecc=hati+2hatj+3hatk`
be three given vectors. If `vecr` is a vector such that `vecrxxvecb=veccxxvecb` and `vecr.veca=0`, then the value of `vecr.vecb` is

A

`4`

B

`8`

C

`6`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{r} \cdot \vec{b} \) given the conditions \( \vec{r} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{r} \cdot \vec{a} = 0 \). ### Step 1: Write down the vectors We have: \[ \vec{a} = -\hat{i} - \hat{k}, \quad \vec{b} = -\hat{i} + \hat{j}, \quad \vec{c} = \hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 2: Use the cross product condition From the condition \( \vec{r} \times \vec{b} = \vec{c} \times \vec{b} \), we can rearrange it to: \[ \vec{r} \times \vec{b} - \vec{c} \times \vec{b} = 0 \] This implies that \( \vec{r} - \vec{c} \) is parallel to \( \vec{b} \). Therefore, we can express \( \vec{r} \) as: \[ \vec{r} = \vec{c} + \lambda \vec{b} \] where \( \lambda \) is a scalar. ### Step 3: Apply the dot product condition Now, we also have the condition \( \vec{r} \cdot \vec{a} = 0 \): \[ (\vec{c} + \lambda \vec{b}) \cdot \vec{a} = 0 \] Expanding this gives: \[ \vec{c} \cdot \vec{a} + \lambda (\vec{b} \cdot \vec{a}) = 0 \] ### Step 4: Calculate \( \vec{c} \cdot \vec{a} \) and \( \vec{b} \cdot \vec{a} \) First, we calculate \( \vec{c} \cdot \vec{a} \): \[ \vec{c} \cdot \vec{a} = (\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (-\hat{i} - \hat{k}) = -1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) = -1 - 3 = -4 \] Next, we calculate \( \vec{b} \cdot \vec{a} \): \[ \vec{b} \cdot \vec{a} = (-\hat{i} + \hat{j}) \cdot (-\hat{i} - \hat{k}) = 1 \cdot 1 + 0 \cdot 1 + 0 \cdot (-1) = 1 \] ### Step 5: Substitute back to find \( \lambda \) Substituting these values into the equation gives: \[ -4 + \lambda (1) = 0 \implies \lambda = 4 \] ### Step 6: Substitute \( \lambda \) back into the expression for \( \vec{r} \) Now we substitute \( \lambda \) back into the expression for \( \vec{r} \): \[ \vec{r} = \vec{c} + 4\vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k}) + 4(-\hat{i} + \hat{j}) = \hat{i} + 2\hat{j} + 3\hat{k} - 4\hat{i} + 4\hat{j} = -3\hat{i} + 6\hat{j} + 3\hat{k} \] ### Step 7: Calculate \( \vec{r} \cdot \vec{b} \) Now we can find \( \vec{r} \cdot \vec{b} \): \[ \vec{r} \cdot \vec{b} = (-3\hat{i} + 6\hat{j} + 3\hat{k}) \cdot (-\hat{i} + \hat{j}) = 3 \cdot 1 + 6 \cdot 1 + 0 = 3 + 6 = 9 \] ### Final Answer Thus, the value of \( \vec{r} \cdot \vec{b} \) is: \[ \boxed{9} \]

To solve the problem, we need to find the value of \( \vec{r} \cdot \vec{b} \) given the conditions \( \vec{r} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{r} \cdot \vec{a} = 0 \). ### Step 1: Write down the vectors We have: \[ \vec{a} = -\hat{i} - \hat{k}, \quad \vec{b} = -\hat{i} + \hat{j}, \quad \vec{c} = \hat{i} + 2\hat{j} + 3\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be three given vectors. If vecr is a vector such that vecr xx veca=vecc xx veca and vecr*vecb=0 , then vecr*veca is equal to _______.

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  2. The value of a so that the volume of the paralelopiped formed by hati+...

    Text Solution

    |

  3. Let veca, vecb and vecc be three vectors having magnitudes 1,1 and 2 r...

    Text Solution

    |

  4. If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+ve...

    Text Solution

    |

  5. If the magnitude of the moment about the pont hatj+hatk of a force hat...

    Text Solution

    |

  6. If the volume of the parallelopiped formed by the vectors veca, vecb, ...

    Text Solution

    |

  7. If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(ve...

    Text Solution

    |

  9. {veca.(vecbxxhati)}hati+{veca.(vecbxxhatj)}hatj+{veca.(vecbxxhatk)}hat...

    Text Solution

    |

  10. The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  11. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  12. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  13. If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt...

    Text Solution

    |

  14. Two adjacent sides of a parallelogram ABCD are given by vec(AB)=2hati+...

    Text Solution

    |

  15. Let veca=hatj-hatk and vecc=hati-hatj-hatk. Then the vector vecb satis...

    Text Solution

    |

  16. The vector (s) which is (are) coplanar with vectors hati+hatj+2hatk an...

    Text Solution

    |

  17. Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be th...

    Text Solution

    |

  18. If veca=1/(sqrt(10))(3hati+hatk),vecb=1/7(2hati+3hatj-6hatk), then the...

    Text Solution

    |

  19. If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2...

    Text Solution

    |

  20. If veca, vecb are non zero vectors, then ((vecaxxvecb)xxveca).((vecbxx...

    Text Solution

    |