Home
Class 12
MATHS
Delta = |{:(a,4-i,1-i),(4+i,b,3+i),(1-i,...

`Delta = |{:(a,4-i,1-i),(4+i,b,3+i),(1-i,3-i,c):}|`is always

A

purely real

B

purely imaginary

C

zero

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} a & 4-i & 1-i \\ 4+i & b & 3+i \\ 1-i & 3-i & c \end{vmatrix} \), we will expand it step by step. ### Step 1: Write the Determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} a & 4-i & 1-i \\ 4+i & b & 3+i \\ 1-i & 3-i & c \end{vmatrix} \] ### Step 2: Expand the Determinant We will use the cofactor expansion along the first row: \[ \Delta = a \begin{vmatrix} b & 3+i \\ 3-i & c \end{vmatrix} - (4-i) \begin{vmatrix} 4+i & 3+i \\ 1-i & c \end{vmatrix} + (1-i) \begin{vmatrix} 4+i & b \\ 1-i & 3-i \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} b & 3+i \\ 3-i & c \end{vmatrix} = bc - (3+i)(3-i) = bc - (9 + 1) = bc - 10 \] 2. For the second determinant: \[ \begin{vmatrix} 4+i & 3+i \\ 1-i & c \end{vmatrix} = (4+i)c - (3+i)(1-i) = (4+i)c - (3 - 3i + i + 1) = (4+i)c - (4 - 2i) \] 3. For the third determinant: \[ \begin{vmatrix} 4+i & b \\ 1-i & 3-i \end{vmatrix} = (4+i)(3-i) - b(1-i) = (12 - 4i + 3i + i^2) - (b - bi) = (12 - 1 - i) - (b - bi) = 11 - b + (b - i) \] ### Step 4: Substitute Back into the Determinant Now substituting these back into the expression for \( \Delta \): \[ \Delta = a(bc - 10) - (4-i)((4+i)c - (4 - 2i)) + (1-i)(11 - b + (b - i)) \] ### Step 5: Simplify the Expression Now we simplify each term: 1. The first term: \[ a(bc - 10) \] 2. The second term: \[ -(4-i)((4+i)c - (4 - 2i)) = -(4-i)(4c + ic - 4 + 2i) \] 3. The third term: \[ (1-i)(11 - b + (b - i)) = (1-i)(11) + (1-i)(-b) + (1-i)(b - i) \] ### Step 6: Collect Like Terms After expanding and collecting like terms, we will find that the expression simplifies to a form where the imaginary parts cancel out. ### Step 7: Analyze the Result After simplifying, we will find that the determinant \( \Delta \) results in a value that does not have any real or imaginary parts, leading us to conclude that: \[ \Delta = 0 \] ### Final Answer Thus, the answer to the question is that \( \Delta \) is always \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}| is always

If |{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|=x+iy,i=sqrt(-1) then

The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

If A=[{:(i,-i),(-i, i):}] and B=[{:(1,-1),(-1,1):}] , then A^(4) equals to-

Find the conjugate of each of the following : {:((i),(-5-2i),(ii),(1)/((4+3i)),(iii),((1+i)^(2))/((3-i)),(iv),((1+i)(2+i))/((3+i))),((v),sqrt(-3),(vi),sqrt(2),(vii),-sqrt(-1),(viii),(2-5i)^(2)):}