Home
Class 12
MATHS
The matrix A = [{:(2 , -2, -4),(- 1, 3, ...

The matrix A = `[{:(2 , -2, -4),(- 1, 3, 4),(1 , - 2, -3):}]` is

A

Nilpotent

B

Idempotent

C

Orthogonal

D

Involutary

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the matrix \( A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \), we will check if it is nilpotent, idempotent, orthogonal, or involuntary. We will do this by calculating \( A^2 \) and comparing it with \( A \). ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \times \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] 2. **Matrix Multiplication**: We will multiply the rows of the first matrix by the columns of the second matrix. - **First Row**: - First element: \( 2 \times 2 + (-2) \times (-1) + (-4) \times 1 = 4 + 2 - 4 = 2 \) - Second element: \( 2 \times (-2) + (-2) \times 3 + (-4) \times (-2) = -4 - 6 + 8 = -2 \) - Third element: \( 2 \times (-4) + (-2) \times 4 + (-4) \times (-3) = -8 - 8 + 12 = -4 \) - **Second Row**: - First element: \( -1 \times 2 + 3 \times (-1) + 4 \times 1 = -2 - 3 + 4 = -1 \) - Second element: \( -1 \times (-2) + 3 \times 3 + 4 \times (-2) = 2 + 9 - 8 = 3 \) - Third element: \( -1 \times (-4) + 3 \times 4 + 4 \times (-3) = 4 + 12 - 12 = 4 \) - **Third Row**: - First element: \( 1 \times 2 + (-2) \times (-1) + (-3) \times 1 = 2 + 2 - 3 = 1 \) - Second element: \( 1 \times (-2) + (-2) \times 3 + (-3) \times (-2) = -2 - 6 + 6 = -2 \) - Third element: \( 1 \times (-4) + (-2) \times 4 + (-3) \times (-3) = -4 - 8 + 9 = -3 \) Thus, we have: \[ A^2 = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] 3. **Compare \( A^2 \) with \( A \)**: We can see that: \[ A^2 = A \] This means that the matrix \( A \) is idempotent. ### Conclusion: The matrix \( A \) is idempotent.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

Knowledge Check

  • The matrix [(2,lambda,-4),(-1,3,4),(1,-2,-3)] is non singular , if :

    A
    `lambda ne -2`
    B
    `lambda ne 2 `
    C
    `lambda ne 3`
    D
    `lambda ne -3`
  • the upper triangular matrix of the matrix [{:(1,-1,2), (2," 1",3),(3, " 2",4):}] is

    A
    `[{:(1,-1," 2"), (0," 3",-1),(0," 0",(-1)/(3)):}]`
    B
    `[{:(1,1,-2), (0, 3,-1),(0, 0,(-1)/(3)):}]`
    C
    `[{:((-1)/(3)," 0",0), (" 3", -1,0),(-1, " 2",0):}]`
    D
    `[{:(1," 1"," 2"), (0, -3,-1),(0, " 0",(-1)/(3)):}]`
  • The rank of the matrix [(1,2,3),(lambda , 2 , 4),(2,-3,1)] is 3 if :

    A
    `lambda ne 18/11`
    B
    `lambda ne 18/11`
    C
    `lambda =-18/11`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The order of the matrix [{:(1,2,3,4),(4,3,2,1),(2,4,3,1):}] is _________

    consider three matrix A=[[2 , 1] , [4 , 1]] , B=[[3 , 4] , [2 , 3]] , C=[[3 , -4] , [-2 , 3]] then the value of sum of tr(A)+tr((ABC)/2)+tr((A(BC)^2)/4)............

    The adjoint matrix of [(3,-3,4),(2,-3,4),(0,-1,1)] is

    The values of a for which the matrix A = ((a,a^(2)-1,-3),(a+1,2,a^(2)+4),(-3,4a,-1)) is symmetric are

    Determine the matrix A, when A=4[{:(1,2,3),(-1,-2,-3),(4,2,6):}]+2[{:(5,4,1),(3,2,4),(3,8,2):}]