Home
Class 12
MATHS
The value of |{:(a- b, b- c, c - a),(b-c...

The value of `|{:(a- b, b- c, c - a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|` =

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a - b & b - c & c - a \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix} \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ D = \begin{vmatrix} a - b & b - c & c - a \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix} \] ### Step 2: Apply column operations We will apply the column operation \( C_1 \leftarrow C_1 + C_2 + C_3 \). This means we will add the second and third columns to the first column. Calculating the new first column: - First row: \( (a - b) + (b - c) + (c - a) = a - b + b - c + c - a = 0 \) - Second row: \( (b - c) + (c - a) + (a - b) = b - c + c - a + a - b = 0 \) - Third row: \( (c - a) + (a - b) + (b - c) = c - a + a - b + b - c = 0 \) So the new determinant becomes: \[ D = \begin{vmatrix} 0 & b - c & c - a \\ 0 & c - a & a - b \\ 0 & a - b & b - c \end{vmatrix} \] ### Step 3: Identify the row of zeros Now, we can see that the first column consists entirely of zeros. ### Step 4: Conclude the value of the determinant Since any determinant with a row (or column) of zeros is equal to zero, we conclude that: \[ D = 0 \] Thus, the value of the determinant is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

The value of determinant |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

What is the value of the determinant |{:(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c):}| ?

Evaluate abs([a-b,b-c,c-a],[b-c,c-a,a-b],[c-a,a-b,b-c])

What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c)| ?

Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|

Evaluate the following: |[a-b, b-c, c-a],[b-c, c-a, a-b],[c-a, a-b, b-c]|

The value of Delta = |(b -c,c -a,a -b),(c -a,a -b,b -c),(a -b,b -c,c -a)| is

The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)| , is