Home
Class 12
MATHS
The values of x, y, z and w such that ...

The values of x, y, z and w such that
` [{:(x - y ,2z + w),(2x - y , 2x + w):}] = [{:(6,4),(12,15):}]` are

A

x = 6 , y = 0 , z = 1/2 , w = 3

B

x = 2 , y = 7, z = 1 , w = 1

C

x = 7 , y = 2 , z = -1, w = 2

D

x = - 7, y = 2, , w = 1

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( x, y, z, \) and \( w \) such that \[ \begin{pmatrix} x - y & 2z + w \\ 2x - y & 2x + w \end{pmatrix} = \begin{pmatrix} 6 & 4 \\ 12 & 15 \end{pmatrix} \] we will equate the corresponding elements of the matrices. ### Step 1: Set up the equations From the equality of the matrices, we can set up the following equations: 1. \( x - y = 6 \) (Equation 1) 2. \( 2z + w = 4 \) (Equation 2) 3. \( 2x - y = 12 \) (Equation 3) 4. \( 2x + w = 15 \) (Equation 4) ### Step 2: Solve for \( y \) using Equation 1 From Equation 1, we can express \( y \) in terms of \( x \): \[ y = x - 6 \] ### Step 3: Substitute \( y \) into Equation 3 Now, substitute \( y \) into Equation 3: \[ 2x - (x - 6) = 12 \] This simplifies to: \[ 2x - x + 6 = 12 \] \[ x + 6 = 12 \] \[ x = 12 - 6 = 6 \] ### Step 4: Find \( y \) Now that we have \( x \), we can find \( y \): \[ y = 6 - 6 = 0 \] ### Step 5: Substitute \( x \) into Equation 4 to find \( w \) Now substitute \( x \) into Equation 4 to find \( w \): \[ 2(6) + w = 15 \] \[ 12 + w = 15 \] \[ w = 15 - 12 = 3 \] ### Step 6: Substitute \( w \) into Equation 2 to find \( z \) Now substitute \( w \) into Equation 2 to find \( z \): \[ 2z + 3 = 4 \] \[ 2z = 4 - 3 \] \[ 2z = 1 \] \[ z = \frac{1}{2} \] ### Final Values Thus, we have the values: \[ x = 6, \quad y = 0, \quad z = \frac{1}{2}, \quad w = 3 \] ### Summary The values of \( x, y, z, \) and \( w \) are: - \( x = 6 \) - \( y = 0 \) - \( z = \frac{1}{2} \) - \( w = 3 \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Find x,y,z and w such that [[x-y,2z+w2x-y,2x+w]]=[[5,312,15]]

Find x, y, z when [(x-y,2x+z),(2x-y,3z+w):}]=[{:(-1,5),(0,13):}].

If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"

Find x + y + z + w

If [{:(x,3x-y),(2x+z,3y-w):}]=[{:(3,2),(4,7):}] , find the values of w.

If [(x-y,2x-y),(2x+z,3z+w)]=[(-1,0),(5,13)]

If [{:(x -y ,4),(z + 6 , x + y ):}] = [{:(8, w),(0,0):}] , then the value of (x + y + w + z) is

If (x -y +z) : (y - z + 2w) : (2x + z-w) =2: 3:5, then (3x + 3z - 2w): w=?